Směrnice Evropského parlamentu a Rady 2005/55/ES ze dne 28. září 2005 o sbližování právních předpisů členských států týkajících se opatření proti emisím plynných znečišťujících látek a znečišťujících částic ze vznětových motorů vozidel a emisím plynných znečišťujících látek ze zážehových motorů vozidel poháněných zemním plynem nebo zkapalněným ropným plynem (Text s významem pro EHP)

Tento náhled textu slouží k rychlé orientaci. Formátovaný text a další informace k předpisu směrnice 2005/55/EU najdete na stránkách systému Eurlex, který je provozovaný Evropskou unií.
Směrnice Evropského parlamentu a Rady 2005/55/ES
          ze dne 28. září 2005
          o sbližování právních předpisů členských států týkajících se opatření proti emisím plynných znečišťujících látek a znečišťujících částic ze vznětových motorů vozidel a emisím plynných znečišťujících látek ze zážehových motorů vozidel poháněných zemním plynem nebo zkapalněným ropným plynem
          (Text s významem pro EHP)
          EVROPSKÝ PARLAMENT A RADA EVROPSKÉ UNIE,
          s ohledem na Smlouvu o založení Evropského společenství, a zejména na článek 95 této smlouvy,
          s ohledem na návrh Komise,
          s ohledem na stanovisko Evropského hospodářského a sociálního výboru [1],
          v souladu s postupem stanoveným v článku 251 Smlouvy [2],
          vzhledem k těmto důvodům:
          (1) Směrnice Rady 88/77/EHS ze dne 3. prosince 1987 o sbližování právních předpisů členských států týkajících se opatření proti emisím plynných znečišťujících látek a znečišťujících částic ze vznětových motorů vozidel a emisím plynných znečišťujících látek z plynových motorů vozidel poháněných zemním plynem nebo zkapalněným ropným plynem [3] je jednou ze zvláštních směrnic týkajících se postupu schvalování typu stanoveného směrnicí Rady 70/156/EHS ze dne 6. února 1970 o sbližování právních předpisů členských států týkajících se schvalování typu motorových vozidel a jejich přípojných vozidel [4]. Směrnice 88/77/EHS byla několikrát podstatně změněna, aby byly postupně zaváděny přísnější mezní hodnoty emisí znečišťujících látek. Jelikož mají být provedeny další změny, je vhodné ji z důvodu přehlednosti přepracovat.
          (2) Směrnice Rady 91/542/EHS, kterou se mění směrnice 88/77/EHS [5], směrnice Evropského parlamentu a Rady 1999/96/ES ze dne 13. prosince 1999 o sbližování právních předpisů členských států týkajících se opatření proti emisím plynných znečišťujících látek a znečišťujících částic ze vznětových motorů vozidel a emisím plynných znečišťujících látek ze zážehových motorů vozidel poháněných zemním plynem nebo zkapalněným ropným plynem a o změně směrnice 88/77/EHS [6] a směrnice Komise 2001/27/ES [7] , kterou se přizpůsobuje technickému pokroku směrnice Rady 88/77/EHS, zavedly ustanovení, která, ačkoli jsou autonomní, jsou úzce spojena s režimem zavedeným směrnicí 88/77/EHS. Uvedená autonomní ustanovení by měla být v zájmu přehlednosti a právní jistoty plně začleněna do přepracovaného znění směrnice 88/77/EHS.
          (3) Je nezbytné, aby všechny členské státy přijaly stejné požadavky, zejména aby bylo možno u každého typu vozidla použít systém ES schvalování typu, který upravuje směrnice 70/156/EHS.
          (4) Program Komise pro kvalitu ovzduší, emise z provozu na pozemních komunikacích, paliva a technologií pro snižování emisí (dále jen "první program Auto-Oil") ukázal, že k dosažení budoucích norem kvality ovzduší je nutné další snižování emisí znečišťujících látek z těžkých nákladních vozidel.
          (5) Snížení mezních hodnot emisí použitelná od roku 2000, která odpovídají snížení emisí oxidu uhelnatého, celkových uhlovodíků, oxidů dusíku a znečišťujících částic o 30 %, byla v prvním programu Auto-Oil označena za klíčová opatření k dosažení uspokojivé kvality ovzduší ve střednědobém termínu. Snížení opacity kouře ve výfukových plynech o 30 % by mělo dále přispět ke snížení množství znečišťujících částic. Další snížení mezních hodnot emisí, použitelná od roku 2005, která odpovídají dalšímu snížení emisí oxidu uhelnatého, celkových uhlovodíků a oxidů dusíku o 30 % a znečišťujících částic o 80 %, by měla velmi přispět ke zlepšení kvality ovzduší ve střednědobém až dlouhodobém výhledu. Výsledkem nové mezní hodnoty pro oxidy dusíku, která se použije od roku 2008, by mělo být další snížení mezní hodnoty emisí pro tuto znečišťující látku o 43 %.
          (6) Jsou použitelné zkoušky pro schvalování typu pro plynné znečišťující látky, znečišťující částice a opacitu kouře, které umožní reprezentativnější vyhodnocení emisních vlastností motorů v podmínkách zkoušek více podobných podmínkám vozidel v provozu. Od roku 2000 se konvenční vznětové motory a vznětové motory vybavené určitými typy zařízení ke snižování emisí zkoušejí zkušebním cyklem v ustáleném stavu a novou zatěžovací zkouškou pro opacitu kouře. Vznětové motory vybavené moderními zařízeními ke snižování emisí se kromě toho zkoušejí novým zkušebním cyklem v neustáleném stavu. Od roku 2005 se budou všechny vznětové motory zkoušet všemi těmito zkušebními cykly. Plynové motory se zkoušejí pouze novým zkušebním cyklem v neustáleném stavu.
          (7) Při každém náhodně vybraném zatížení v rámci vymezeného rozsahu pracovních podmínek nesmějí být mezní hodnoty překročeny více než o odpovídající procento.
          (8) Při stanovování nových norem a postupů zkoušek by měl být vzat v úvahu dopad budoucího nárůstu dopravy ve Společenství na kvalitu ovzduší. Práce, kterou Komise v této oblasti odvedla, ukázala, že automobilový průmysl ve Společenství velmi pokročil ve zlepšování technologií, které umožňují značné snížení emisí plynných znečišťujících látek a znečišťujících částic. I nadále je však nutné trvat na dalších zlepšeních týkajících se mezních hodnot emisí a jiných technických požadavků v zájmu ochrany životního prostředí a veřejného zdraví. Ve veškerých budoucích opatřeních by měly být vzaty v úvahu zejména výsledky pokračujícího výzkumu vlastností nejjemnějších částic.
          (9) Je nezbytné dále zlepšit jakost motorových paliv, aby byla zajištěna účinná a trvalá výkonnost systémů regulace emisí v provozu.
          (10) Od roku 2005 by měla být zavedena nová ustanovení o palubních diagnostických systémech (OBD), aby bylo usnadněno okamžité zjištění zhoršené funkce nebo poruchy zařízení motoru pro snižování emisí. To by mělo zlepšit možnosti diagnostiky a oprav, a tím podstatně zlepšit udržitelné emisní vlastnosti těžkých nákladních vozidel v provozu. Jelikož z celosvětového hlediska jsou OBD u vznětových motorů velkého výkonu v počáteční fázi, měly by se ve Společenství zavést ve dvou etapách, aby bylo možné vyvinout takové systémy, aby systém OBD neposkytoval nesprávné údaje. S cílem pomoci členským státům zajistit, aby majitelé a provozovatelé těžkých nákladních vozidel dodržovali povinnost odstranit chyby oznámené systémem OBD, je nutno zaznamenávat ujetou vzdálenost nebo čas, který uplynul od nahlášení poruchy řidiči.
          (11) Vznětové motory jsou trvanlivé a bylo prokázáno, že při správné a účinné údržbě jsou s to zachovat dobré emisní vlastnosti i po ujetí poměrně velkých vzdáleností těžkým nákladním vozidlem při běžném provozu. Budoucí emisní normy však budou prosazovat zavedení systémů regulace emisí za motorem, například systémy k odstraňování NOx, filtry částic a systémy, které jsou kombinací obojího, a možná budou definovány ještě jiné systémy. Proto je nezbytné stanovit požadavek na dobu životnosti, na němž budou založeny postupy k zajištění shody systému motoru pro regulaci emisí během celého tohoto referenčního období. Při stanovení tohoto požadavku je nutno vzít řádně v úvahu značné vzdálenosti, které ujedou těžká nákladní vozidla, potřebu začlenit náležitou a včasnou údržbu a možnost schvalování typu vozidel kategorie N1 v souladu buď s touto směrnicí, nebo se směrnicí Rady 70/220/EHS ze dne 20. března 1970 o sbližování právních předpisů členských států týkajících se opatření proti znečišťování ovzduší emisemi z motorových vozidel [8].
          (12) Členským státům by mělo být umožněno prostřednictvím daňových pobídek upřednostnit uvádění na trh vozidel, která splňují požadavky přijaté na úrovni Společenství, přičemž tyto pobídky musí vyhovovat ustanovením Smlouvy a splňovat určité podmínky zabraňující narušení vnitřního trhu. Touto směrnicí není dotčeno právo členských států zahrnout emise znečišťujících látek a jiných látek do základu pro stanovení daní ze silničního provozu motorových vozidel.
          (13) Jelikož některé tyto pobídky představují státní podporu podle čl. 87 odst. 1 Smlouvy, měly by být podle čl. 88 odst. 3 Smlouvy oznámeny Komisi, aby je bylo možno posoudit v souladu s příslušnými kritérii slučitelnosti. Oznámením těchto opatření v souladu s touto směrnicí by neměla být dotčena oznamovací povinnost podle čl. 88 odst. 3 Smlouvy.
          (14) Ke zjednodušení a urychlení postupu by Komise měla být pověřena úkolem přijímat opatření k provedení základních ustanovení této směrnice a opatření k přizpůsobení příloh této směrnice vědeckému a technickému pokroku.
          (15) Opatření nezbytná k provedení této směrnice a jejímu přizpůsobení vědeckému a technickému pokroku by měla být přijímána v souladu s rozhodnutím Rady 1999/468/ES ze dne 28. června 1999 o postupech pro výkon prováděcích pravomocí svěřených Komisi [9] .
          (16) Komise by měla přezkoumávat potřebu zavedení mezních hodnot emisí pro znečišťující látky, které dosud regulované nejsou a které vznikají v důsledku širšího používání nových alternativních paliv a nových systémů regulace emisí výfukových plynů.
          (17) Komise by měla co nejdříve předložit pro další etapu návrhy mezních hodnot emisí NOx a znečišťujících částic, které považuje za přiměřené.
          (18) Jelikož cílů této směrnice, totiž provedení jednotného trhu zavedením společných technických požadavků týkajících se plynných emisí a emisí znečišťujících částic pro všechny typy vozidel, nemůže být dosaženo uspokojivě na úrovni členských států, a proto, z důvodu rozsahu zamýšleného opatření, jich může být lépe dosaženo na úrovni Společenství, může Společenství přijmout opatření v souladu se zásadou subsidiarity stanovenou v článku 5 Smlouvy. V souladu se zásadou proporcionality stanovenou v uvedeném článku nepřekračuje tato směrnice rámec toho, co je k dosažení tohoto cíle nezbytné.
          (19) Povinnost provést tuto směrnici ve vnitrostátním právu by měla být omezena na ta ustanovení, která oproti dřívějším směrnicím představují podstatnou změnu. Povinnost provést ustanovení, která nebyla změněna, vzniká podle dřívějších směrnic.
          (20) Touto směrnicí by neměly být dotčeny povinnosti členských států týkající se lhůt pro provedení ve vnitrostátním právu a použitelnost směrnic uvedených v příloze IX části B,
          PŘIJALY TUTO SMĚRNICI:
          Článek 1
          Definice
          Pro účely této směrnice se rozumí:
          a) "vozidlem" vozidlo definované v článku 2 směrnice 70/156/EHS poháněná vznětovým motorem nebo plynovým motorem, kromě vozidel kategorie M1 s maximální technicky přípustnou hmotností nepřekračující 3,5 t;
          b) "vznětovým motorem nebo plynovým motorem" zdroj motorického pohonu vozidla, pro který se může udělit schválení typu jako samostatného technického celku ve smyslu článku 2 směrnice 70/156/EHS;
          c) "vozidlem zvláště šetřícím životním prostředí (EEV)" vozidlo poháněné motorem, který splňuje volitelné mezní hodnoty emisí stanovené v řádku C tabulek v bodě 6.2.1 přílohy I.
          Článek 2
          Povinnosti členských států
          1. Pro typy vznětových motorů nebo plynových motorů a typy vozidel poháněných vznětovými motory nebo plynovými motory, nejsou-li splněny požadavky stanovené v přílohách I až VIII, a zejména pokud emise plynných znečišťujících látek a znečišťujících částic a opacita kouře z motoru nesplňují mezní hodnoty stanovené v řádku A tabulek v bodě 6.2.1 přílohy I, členské státy:
          a) odmítnou udělit ES schválení typu podle čl. 4 odst. 1 směrnice 70/156/EHS a
          b) odmítnou vnitrostátní schválení typu.
          2. S výjimkou vozidel a motorů určených pro vývoz do třetích zemí a náhradních motorů pro vozidla v provozu, nejsou-li splněny požadavky stanovené v přílohách I až VIII, a zejména pokud emise plynných znečišťujících látek a znečišťujících částic a opacita kouře z motoru nesplňují mezní hodnoty stanovené v řádku A tabulek v bodě 6.2.1 přílohy I, členské státy:
          a) považují osvědčení o shodě doprovázející nová vozidla nebo nové motory podle směrnice 70/156/EHS za neplatná pro účely čl. 7 odst. 1 uvedené směrnice a
          b) zakáží registraci, prodej, uvedení do provozu nebo užívání nových vozidel poháněných vznětovým motorem nebo plynovým motorem a prodej nebo užívání nových vznětových motorů nebo plynových motorů.
          3. Aniž jsou dotčeny odstavce 1 a 2, od 1. října 2003 a s výjimkou vozidel a motorů určených k vývozu do třetích zemí nebo náhradních motorů pro vozidla v provozu, členské státy pro typy plynových motorů a typy vozidel poháněných plynovým motorem, které nesplňují požadavky stanovené v přílohách I až VIII:
          a) považují osvědčení o shodě doprovázející nová vozidla nebo nové motory podle směrnice 70/156/EHS za neplatná pro účely čl. 7 odst. 1 uvedené směrnice a
          b) zakáží registraci, prodej, uvedení do provozu nebo užívání nových vozidel a prodej nebo užívání nových motorů.
          4. Pokud jsou splněny požadavky stanovené v přílohách I až VIII a v článcích 3 a 4, zejména pokud emise plynných znečišťujících látek a znečišťujících částic a opacita kouře splňují mezní hodnoty stanovené v řádku B1 nebo řádku B2 nebo volitelné mezní hodnoty emisí stanovené v řádku C tabulek v bodě 6.2.1 přílohy I, nesmějí členské státy z důvodů týkajících se plynných znečišťujících látek a znečišťujících částic a opacity kouře emitovaných z motoru:
          a) odmítnout udělit ES schválení typu podle čl. 4 odst. 1 směrnice 70/156/EHS nebo udělit vnitrostátní schválení typu pro typ vozidla poháněného vznětovým motorem nebo plynovým motorem;
          b) zakázat registraci, prodej, uvedení do provozu nebo užívání nových vozidel poháněných vznětovým motorem nebo plynovým motorem;
          c) odmítnout udělit ES schválení typu pro typ vznětového motoru nebo plynového motoru;
          d) zakázat prodej nebo užívání nových vznětových motorů nebo plynových motorů.
          5. Od 1. října 2005 pro typy vznětových motorů nebo plynových motorů a typy vozidel poháněných vznětovým motorem nebo plynovým motorem, které nesplňují požadavky stanovené v přílohách I až VIII a v článcích 3 a 4, a zejména pokud emise plynných znečišťujících látek a znečišťujících částic a opacita kouře z motoru nesplňují mezní hodnoty stanovené v řádku B1 tabulek v bodě 6.2.1 přílohy I, členské státy:
          a) odmítnou udělit ES schválení typu podle čl. 4 odst. 1 směrnice 70/156/EHS a
          b) odmítnou vnitrostátní schválení typu.
          6. Od 1. října 2006, s výjimkou vozidel určených k vývozu do třetích zemí nebo náhradních motorů pro vozidla v provozu, nejsou-li splněny požadavky stanovené v přílohách I až VIII a v článcích 3 a 4, a zejména pokud emise plynných znečišťujících látek a znečišťujících částic a opacita kouře z motoru nesplňují mezní hodnoty stanovené v řádku B1 tabulek v bodě 6.2.1 přílohy I, členské státy:
          a) považují osvědčení o shodě doprovázející nová vozidla nebo nové motory podle směrnice 70/156/EHS za neplatná pro účely čl. 7 odst. 1 uvedené směrnice a
          b) zakáží registraci, prodej, uvedení do provozu nebo užívání nových vozidel poháněných vznětovým motorem nebo plynovým motorem a prodej nebo užívání nových vznětových motorů nebo plynových motorů.
          7. Od 1. října 2008 pro typy vznětových motorů nebo plynových motorů a typy vozidel poháněných vznětovým motorem nebo plynovým motorem, které nesplňují požadavky stanovené v přílohách I až VIII a v článcích 3 a 4, a zejména pokud emise plynných znečišťujících látek a znečišťujících částic a opacita kouře z motoru nesplňují mezní hodnoty stanovené v řádku B2 tabulek v bodě 6.2.1 přílohy I, členské státy:
          a) odmítnou udělit ES schválení typu podle čl. 4 odst. 1 směrnice 70/156/EHS a
          b) odmítnou vnitrostátní schválení typu.
          8. Od 1. října 2009, s výjimkou vozidel určených k vývozu do třetích zemí nebo náhradních motorů pro vozidla v provozu, nejsou-li splněny požadavky stanovené v přílohách I až VIII a v článcích 3 a 4, a zejména pokud emise plynných znečišťujících látek a znečišťujících částic a opacita kouře z motoru nesplňují mezní hodnoty stanovené v řádku B2 tabulek v bodě 6.2.1 přílohy I, členské státy:
          a) považují osvědčení o shodě doprovázející nová vozidla nebo nové motory podle směrnice 70/156/EHS za neplatná pro účely čl. 7 odst. 1 uvedené směrnice a
          b) zakáží registraci, prodej, uvedení do provozu nebo užívání nových vozidel poháněných vznětovým motorem nebo plynovým motorem a prodej nebo užívání nových vznětových motorů nebo plynových motorů.
          9. V souladu s odstavcem 4 se motor, který splňuje požadavky stanovené v přílohách I až VIII, a zejména mezní hodnoty stanovené v řádku C tabulek v bodě 6.2.1 přílohy I, pokládá za motor splňující požadavky stanovené v odstavcích 1, 2 a 3.
          V souladu s odstavcem 4 se motor, který splňuje požadavky stanovené v přílohách I až VIII a v článcích 3 a 4, a zejména mezní hodnoty stanovené v řádku C tabulek v bodě 6.2.1 přílohy I, pokládá za motor splňující požadavky stanovené v odstavcích 1 až 3 a 5 až 8.
          10. Pro vznětové motory nebo plynové motory, které musí v systému schvalování typu splňovat mezní hodnoty stanovené v bodě 6.2.1 přílohy I, platí toto:
          při každém náhodně vybraném zatížení, které spadá do určitého kontrolního rozsahu, a s výjimkou určitých podmínek pracovního rozsahu motorů, na které se takové ustanovení nevztahuje, nesmějí vzorky emisí odebrané během časových úseků trvajících pouze 30 sekund překročit mezní hodnoty uvedené v řádcích B2 a C tabulek v bodě 6.2.1 přílohy I o více než 100 %. Kontrolní rozsah, na nějž se vztahuje procento, které nesmí být překročeno, vyloučené provozní podmínky motorů a jiné související podmínky budou stanoveny postupem podle čl. 7 odst. 1.
          Článek 3
          Životnost systémů regulace emisí
          1. Od 1. října 2005 pro nová schválení typu a od 1. října 2006 pro všechna schválení typu musí výrobce prokázat, že vznětový motor nebo plynový motor schválený jako typ na základě mezních hodnot emisí stanovených v řádku B1 nebo řádku B2 nebo řádku C tabulek v bodě 6.2.1 přílohy I bude splňovat tyto mezní hodnoty emisí po dobu:
          a) ujetí 100000 km nebo pěti let, podle toho, co nastane dříve, v případě motorů, kterými mají být vybavena vozidla kategorie N1 a M2;
          b) ujetí 200000 km nebo šesti let, podle toho, co nastane dříve, v případě motorů, kterými mají být vybavena vozidla kategorie N2, N3 s maximální technicky přípustnou hmotností 16 t a M3 třídy I, třídy II a třídy A, jakož i třídy B s maximální technicky přípustnou hmotností 7,5 t;
          c) ujetí 500000 km nebo sedmi let, podle toho, co nastane dříve, v případě motorů, kterými mají být vybavena vozidla kategorie N3 s maximální technicky přípustnou hmotností překračující 16 t a M3 třídy III a třídy B s maximální technicky přípustnou hmotností překračující 7,5 t.
          Od 1. října 2005 pro nová schválení typu a od 1. října 2006 pro všechna schválení typu se k udělení schválení typu vozidla vyžaduje rovněž potvrzení o řádném fungování přístrojů pro kontrolu emisí po dobu běžné životnosti vozidla za běžných podmínek používání (shoda řádně udržovaných a používaných vozidel v provozu).
          2. Opatření k provedení odstavce 1 budou přijata do 28. prosince 2005.
          Článek 4
          Palubní diagnostické systémy
          1. Od 1. října 2005 pro nová schválení typu vozidel a od 1. října 2006 pro všechna schválení typu musí být vznětový motor schválený jako typ na základě mezních hodnot emisí stanovených v řádku B1 nebo řádku C tabulek v bodě 6.2.1 přílohy I nebo vozidlo poháněné takovým motorem vybaveny palubním diagnostickým systémem (OBD), který řidiči signalizuje chybu, dojde-li k překročení prahových hodnot pro OBD stanovených v řádku B1 nebo řádku C tabulky v odstavci 3.
          a) katalyzátoru, je-li zabudován jako samostatná jednotka, bez ohledu na to, zda je nebo není součástí systému k odstraňování NOx nebo filtru částic;
          b) systému k odstraňování NOx, je-li zabudován;
          c) filtru částic, je-li zabudován;
          d) kombinovaného systému k odstraňování NOx a filtru částic.
          2. Od 1. října 2008 pro nová schválení typu a od 1. října 2009 pro všechna schválení typu musí být vznětový motor nebo plynový motor schválený jako typ na základě mezních hodnot emisí stanovených v řádku B2 nebo řádku C tabulek v bodě 6.2.1 přílohy I nebo vozidlo poháněné takovým motorem vybaveny OBD, který řidiči signalizuje chybu, dojde-li k překročení prahových hodnot pro OBD stanovených v řádku B2 nebo řádku C tabulky v odstavci 3.
          Systém OBD obsahuje rovněž rozhraní mezi elektronickou řídící jednotkou motoru (EECU) a jinými elektrickými nebo elektronickými systémy motoru nebo vozidla, které EECU poskytují vstup nebo přijímají výstup z EECU a které ovlivňují správné fungování systému regulace emisí, například rozhraní mezi EECU a elektronickou řídící jednotkou převodovky.
          3. Prahové hodnoty pro OBD jsou tyto:
          Řádek | Vznětové motory |
          Hmotnost oxidů dusíku (NOx) g/kWh | Hmotnost částic (PT) g/kWh |
          B1 (2005) | 7,0 | 0,1 |
          B2 (2008) | 7,0 | 0,1 |
          C (EEV) | 7,0 | 0,1 |
          4. Musí být poskytnut úplný a jednotný přístup k informacím o OBD za účelem testování, diagnostiky, údržby a oprav v souladu s odpovídajícími ustanoveními směrnice 70/220/EHS a ustanoveními týkajícími se náhradních dílů zajišťujícími kompatibilitu s OBD.
          5. Opatření k provedení odstavců 1, 2 a 3 budou přijata do 28. prosince 2005.
          Článek 5
          Systémy pro regulaci emisí používající spotřebovávaná činidla
          Při stanovení opatření nezbytných k provedení článku 4 podle čl. 7 odst. 1 Komise zahrne podle potřeby technická opatření, která minimalizují riziko, že systémy pro regulaci emisí používající spotřebovávaná činidla budou při provozu ndostatečně udržovány. V případě potřeby navíc zahrne opatření k zajištění minimalizace emisí amoniaku v důsledku používání spotřebovávaných činidel.
          Článek 6
          Daňové pobídky
          1. Členské státy mohou stanovit daňové pobídky pouze pro vozidla splňující požadavky této směrnice. Tyto pobídky musí být v souladu se Smlouvou a s odstavcem 2 nebo odstavcem 3 tohoto článku.
          2. Pobídky se musí vztahovat na všechna nová vozidla, která jsou uváděna na trh členského státu a která splňují v předstihu mezní hodnoty stanovené v řádku B1 nebo B2 tabulek v bodě 6.2.1 přílohy I.
          Musí skončit dnem použitelnosti povinného uplatňování mezních hodnot emisí v řádku B1, jak je stanoveno v čl. 2 odst. 6, nebo dnem povinného uplatňování mezních hodnot emisí v řádku B2, jak je stanoveno v čl. 2 odst. 8.
          3. Pobídky se musí vztahovat na všechna nová vozidla, která jsou uváděna na trh členského státu a která splňují volitelné mezní hodnoty stanovené v řádku C tabulek v bodě 6.2.1 přílohy I.
          4. Vedle podmínek uvedených v odstavci 1 nesmějí pobídky ve vztahu ke každému typu vozidla převýšit dodatečné náklady na technická řešení zaváděná pro zajištění souladu s mezními hodnotami stanovenými v řádku B1 nebo B2 nebo volitelnými mezními hodnotami stanovenými v řádku C tabulek v bodě 6.2.1 přílohy I a náklady na jejich instalaci do vozidla.
          5. Členské státy Komisi včas uvědomí o záměrech zavést nebo změnit daňové pobídky podle tohoto článku, aby mohla předložit své vyjádření.
          Článek 7
          Prováděcí opatření a změny
          1. Opatření nezbytná k provedení čl. 2 odst. 10 a článků 3 a 4 této směrnice přijme Komise, které je nápomocen výbor zřízený čl. 13 odst. 1 směrnice 70/156/EHS, postupem stanoveným v čl. 13 odst. 3 uvedené směrnice.
          2. Změny směrnice, které jsou nezbytné k jejímu přizpůsobení vědeckému a technickému pokroku, přijímá Komise, které je nápomocen výbor zřízený čl. 13 odst. 1 směrnice 70/156/EHS, postupem stanoveným v čl. 13 odst. 3 uvedené směrnice.
          Článek 8
          Přezkum a zprávy
          1. Komise přezkoumá potřebu zavést nové mezní hodnoty emisí použitelné pro těžká nákladní vozidla a motory velkého výkonu s ohledem na znečišťující látky, které dosud nejsou regulovány. Přezkum bude založen na širším uvedení nových alternativních paliv na trh a na zavedení nových systémů regulace emisí výfukových plynů s přísadami ke splnění budoucích norem stanovených v této směrnici. Komise případně předloží Evropskému parlamentu a Radě vhodný návrh.
          2. Komise by měla předložit Evropskému parlamentu a Radě legislativní návrhy na další mezní hodnoty emisí NOx a znečišťujících částic pro těžká nákladní vozidla.
          V případě potřeby prošetří, zda je nezbytné stanovit další mezní hodnoty pro úrovně a velikost znečišťujících částic, a pokud ano, zahrne je do svých návrhů.
          3. Komise předloží Evropskému parlamentu a Radě zprávu o pokroku v jednáních o celosvětovém harmonizovaném cyklu zkoušek motorů velkého výkonu (WHDC).
          4. Komise podá Evropskému parlamentu a Radě zprávu o požadavcích na používání palubního měřicího systému (OBM). Na základě této zprávy předloží Komise případně návrh na opatření, která budou obsahovat technické požadavky a odpovídající přílohy pro schvalování typu OBM, kterými se zajistí nejméně rovnocenná úroveň monitorování jako u OBD a které jsou s nimi kompatibilní.
          Článek 9
          Provedení
          1. Členské státy do 9. listopadu 2006 přijmou a zveřejní právní a správní předpisy nezbytné pro dosažení souladu s touto směrnicí. Budou-li prováděcí opatření uvedená v článku 7 přijata až po 28. prosici 2005, splní členské státy tuto povinnost do dne provedení stanoveného ve směrnici, která tato prováděcí opatření obsahuje. Neprodleně sdělí Komisi znění těchto předpisů a srovnávací tabulku mezi těmito předpisy a touto směrnicí.
          Budou tyto předpisy používat ode dne 9. listopadu 2006, nebo budou-li prováděcí opatření uvedená v článku 7 přijata až po 28. prosici 2005, ode dne provedení stanoveného ve směrnici, která tato prováděcí opatření obsahuje.
          Tato opatření přijatá členskými státy musí obsahovat odkaz na tuto směrnici nebo musí být takový odkaz učiněn při jejich úředním vyhlášení. Musí obsahovat rovněž prohlášení, že odkazy ve stávajících právních a správních předpisech na směrnice zrušené touto směrnicí se považují za odkazy na tuto směrnici. Způsob odkazu a znění prohlášení si stanoví členské státy.
          2. Členské státy sdělí Komisi znění hlavních ustanovení vnitrostátních právních předpisů, které přijmou v oblasti působnosti této směrnice.
          Článek 10
          Zrušení
          Směrnice uvedené v příloze IX části A se zrušují s účinkem ode dne 9. listopadu 2006, aniž jsou dotčeny povinnosti členských států týkající se lhůt pro provedení ve vnitrostátním právu a použitelnost směrnic uvedených v příloze IX části B.
          Odkazy na zrušené směrnice se považují za odkazy na tuto směrnici v souladu se srovnávací tabulkou v příloze X.
          Článek 11
          Vstup v platnost
          Tato směrnice vstupuje v platnost dvacátým dnem po vyhlášení v Úředním věstníku Evropské unie.
          Článek 12
          Určení
          Tato směrnice je určena členským státům.
          
          Ve Štrasburku dne 28. září 2005.
          Za Evropský parlament
          předseda
          J. Borrell Fontelles
          Za Radu
          předseda
          D. Alexander
          [1] Úř. věst. C 108, 30.4.2004, s. 32.
          [2] Stanovisko Evropského parlamentu ze dne 9. března 2004 (Úř. věst. C 102 E, 28.4.2004, s. 272) a rozhodnutí Rady ze dne 19. září 2005.
          [3] Úř. věst. L 36, 9.2.1988, s. 33. Směrnice naposledy pozměněná aktem o přistoupení z roku 2003.
          [4] Úř. věst. L 42, 23.2.1970, s. 1. Směrnice naposledy pozměněná směrnicí Komise 2005/49/ES (Úř. věst. L 194, 26.7.2005, s. 12).
          [5] Úř. věst. L 295, 25.10.1991, s. 1.
          [6] Úř. věst. L 44, 16.2.2000, s. 1.
          [7] Úř. věst. L 107, 18.4.2001, s. 10.
          [8] Úř. věst. L 76, 6.4.1970, s. 1. Směrnice naposledy pozměněná směrnicí Komise 2003/76/ES (Úř. věst. L 206, 15.8.2003, s. 29).
          [9] Úř. věst. L 184, 17.7.1999, s. 23.
          --------------------------------------------------
          PŘÍLOHA I
          OBLAST PŮSOBNOSTI, DEFINICE A ZKRATKY, ŽÁDOST O ES SCHVÁLENÍ TYPU, POŽADAVKY A ZKOUŠKY A SHODNOST VÝROBY
          1. OBLAST PŮSOBNOSTI
          Tato směrnice se vztahuje na emise plynných znečišťujících látek a znečišťujících částic ze všech motorových vozidel vybavených vznětovými motory a na emise plynných znečišťujících látek ze všech motorových vozidel vybavených zážehovými motory pracujícími se zemním plynem nebo zkapalněným ropným plynem a na vznětové motory a zážehové motory uvedené v článku 1, kromě těch vozidel kategorií N1, N2 a M2, pro která bylo uděleno schválení typu podle směrnice 70/220/EHS ze dne 20. března 1970 o sbližování právních předpisů členských států týkajících se opatření proti znečišťování ovzduší emisemi z motorových vozidel [1].
          2. DEFINICE A ZKRATKY
          Pro účely této směrnice se rozumí:
          2.1 "zkušebním cyklem" sled fází zkoušky, z nichž každá je definována určitými otáčkami a točivým momentem, které musí mít motor v ustáleném stavu (zkouška ESC) nebo za neustálených provozních podmínek (zkouška ETC, ELR);
          2.2 "schválením typu motoru (rodiny motorů)" schválení typu motoru (rodiny motorů) z hlediska úrovně emisí plynných znečišťujících látek a znečišťujících částic;
          2.3 "vznětovým motorem" motor, který pracuje na principu zapalování kompresí;
          2.4 "plynovým motorem" motor na zemní plyn (NG) nebo na zkapalněný ropný plyn (LPG);
          2.5 "typem motoru" motory, které se neliší v takových zásadních hlediscích, jako jsou vlastnosti definované v příloze II této směrnice;
          2.6 "rodinou motorů" výrobcem stanovená skupina motorů, které vzhledem ke své konstrukci definované v dodatku 2 k příloze II této směrnice mají podobné emisní vlastnosti; všechny jednotlivé motory rodiny musí splňovat platné mezní hodnoty emisí;
          2.7 "základním motorem" motor vybraný z rodiny motorů tak, aby jeho emisní vlastnosti byly reprezentativní pro tuto rodinu motorů;
          2.8 "plynnými znečišťujícími látkami" oxid uhelnatý, uhlovodíky (odpovídající ekvivalentu CH1,85 pro motorovou naftu, CH2,525 pro LPG a CH2,93 pro NG (NMHC) a odpovídající molekule CH3O0,5 u vznětových motorů spalujících ethanol), methan (odpovídající ekvivalentu CH4 pro NG) a oxidy dusíku vyjádřené ekvivalentem oxidu dusičitého (NO2);
          2.9 "znečišťujícími částicemi" materiál, který se zachytí na stanoveném filtračním médiu po zředění výfukových plynů čistým filtrovaným vzduchem při teplotě nejvýše 325 K (52 oC);
          2.10 "kouřem" částice suspendované v proudu výfuku vznětového motoru, které pohlcují, odrážejí nebo lámou světlo;
          2.11 "netto výkonem" výkon v kW ES odebraný dynamometrem na konci klikového hřídele nebo rovnocenného orgánu a měřený metodou ES pro měření výkonu podle směrnice Rady 80/1269/EHS ze dne 16. prosince 1980 o sbližování právních předpisů členských států týkajících se výkonu motorů motorových vozidel [2];
          2.12 "deklarovaným maximálním výkonem (Pmax)" maximální výkon v kW ES (netto výkon) podle prohlášení výrobce v jeho žádosti o schválení typu;
          2.13 "poměrným zatížením" procentní podíl maximálního využitelného momentu při daných otáčkách;
          2.14 "zkouškou ESC" zkušební cyklus skládající se z 13 režimů ustáleného stavu, který se provádí podle bodu 6.2 této přílohy;
          2.15 "zkouškou ELR" zkušební cyklus skládající se ze sledu stupňů zatížení při konstantních otáčkách motoru, který se provádí podle bodu 6.2 této přílohy;
          2.16 "zkouškou ETC" zkušební cyklus skládající se z 1800 neustálených režimů, které se střídají každou sekundu, cyklus probíhá podle bodu 6.2 této přílohy;
          2.17 "rozsahem provozních otáček motoru" rozsah otáček motoru, který se používá nejčastěji při běžném provozu motoru a který leží mezi dolními a horními otáčkami podle přílohy III této směrnice;
          2.18 "dolními otáčkami (nlo)" nejnižší otáčky, při kterých má motor 50 % maximálního deklarovaného výkonu;
          2.19 "horními otáčkami (nhi)" nejvyšší otáčky, při kterých má motor 70 % maximálního deklarovaného výkonu;
          2.20 "otáčkami motoru A, B a C" zkušební otáčky v rozsahu provozních otáček motoru, které se použijí pro zkoušku ESC a pro zkoušku ELR podle dodatku 1 k příloze III této směrnice;
          2.21 "kontrolním rozsahem" rozsah mezi otáčkami motoru A a C a mezi procentním zatížením od 25 do 100;
          2.22 "referenčními otáčkami (nref)" 100 % hodnoty otáček, která se použije k denormalizování poměrných hodnot otáček zkoušky ETC podle dodatku 2 k příloze III této směrnice;
          2.23 "opacimetrem" přístroj určený k měření opacity částic kouře na principu zeslabení světla;
          2.24 "skupinou plynů NG" jedna ze skupin H nebo L definovaných v evropské normě EN 437 z listopadu 1993;
          2.25 "automatickou přizpůsobivostí" každé zařízení motoru, které umožňuje udržovat konstantní poměr vzduch / palivo;
          2.26 "rekalibrováním" jemné seřízení motoru na NG, aby se zajistila stejná výkonnost (výkon, spotřeba paliva) v jiné skupině zemního plynu;
          2.27 "Wobbeho indexem (dolním Wl nebo horním Wu)" poměr odpovídající výhřevnosti plynu na jednotku objemu k druhé odmocnině poměrné hustoty plynu za stejných referenčních podmínek:
          W = Hplyn × ρvzduchρplyn
          2.28 "faktorem posunu λ (Sλ)" výraz, který popisuje požadovanou pružnost systému řízení motoru z hlediska změny poměru přebytku vzduchu λ, jestliže motor pracuje s plynem rozdílného složení, než má čistý methan (pro výpočet Sλ viz příloha VII);
          2.29 "odpojovacím zařízením" zařízení, které měří nebo snímá provozní proměnné veličiny nebo na ně reaguje (např. rychlost vozidla, otáčky motoru, použitý rychlostní stupeň, teplotu, tlak v sání nebo jakýkoli jiný parametr), aby se aktivovala, měnila, zpomalovala nebo deaktivovala činnost kterékoli části nebo funkce systému regulace emisí a tím se snížila účinnost systému regulace emisí za běžných podmínek používání vozidla, kromě případu, kdy použití takového zařízení je výslovně obsaženo v postupech zkoušek pro schválení typu z hlediska emisí;
          Obrázek 1
          Zvláštní definice zkušebních cyklů
          +++++ TIFF +++++
          2.30 "pomocným řídicím zařízením" systém, funkce nebo řídicí strategie, které jsou instalovány na motoru nebo na vozidle a používají se k ochraně motoru nebo jeho pomocných zařízení před provozními stavy, jejichž výsledkem může být poškození nebo porucha, nebo se používají k usnadnění startování motoru. Pomocným řídicím zařízením může být též strategie nebo opatření, o nichž bylo plně prokázáno, že nejsou odpojovacím zařízením;
          2.31 "nenormální strategií pro regulaci emisí" strategie nebo opatření, které, provozuje-li se vozidlo za běžných podmínek používání, zmenšuje účinnost systému regulace emisí na úroveň nižší, než předpokládají postupy odpovídajících zkoušek emisí.
          2.32 Značky a zkratky
          2.32.1 Značky zkušebních parametrů
          Symbol | Jednotka | Význam |
          AP | m2 | Plocha průřezu izokinetické odběrné sondy |
          AT | m2 | Plocha průřezu výfukového potrubí |
          CEE | — | Účinnost vztažená k ethanu |
          CEM | — | Účinnost vztažená k methanu |
          C1 | — | Ekvivalent uhlovodíků vyjádřený uhlíkem 1 |
          conc | ppm/vol. % | Koncentrace (s indexem označujícím složku) |
          D0 | m3/s | Úsek na ose souřadnic příslušející kalibrační funkci PDP |
          DF | — | Faktor ředění |
          D | — | Konstanta Besselovy funkce |
          E | — | Konstanta Besselovy funkce |
          EZ | g/kWh | Interpolovaná hodnota emisí NOx v regulačním bodě |
          fa | — | Faktor ovzduší v laboratoři |
          fc | s-1 | Besselova mezní frekvence filtru |
          FFH | — | Specifický faktor paliva použitý k výpočtu vlhké koncentrace ze suché koncentrace |
          FS | — | Stechiometrický faktor |
          GAIRW | kg/h | Hmotnostní průtok vlhkého nasávaného vzduchu |
          GAIRD | kg/h | Hmotnostní průtok suchého nasávaného vzduchu |
          GDILW | kg/h | Hmotnostní průtok vlhkého ředicího vzduchu |
          GEDFW | kg/h | Ekvivalentní hmotnostní průtok zředěného vlhkého výfukového plynu |
          GEXHW | kg/h | Hmotnostní průtok vlhkého výfukového plynu |
          GFUEL | kg/h | Hmotnostní průtok paliva |
          GTOTW | kg/h | Hmotnostní průtok zředěného vlhkého výfukového plynu |
          H | MJ/m3 | Výhřevnost |
          HREF | g/kg | Referenční hodnota absolutní vlhkosti (10,71 g/kg) |
          Ha | g/kg | Absolutní vlhkost nasávaného vzduchu |
          Hd | g/kg | Absolutní vlhkost ředicího vzduchu |
          HTCRAT | mol/mol | Poměr vodíku k uhlíku |
          i | — | Index označující jednotlivý režim |
          K | — | Besselova konstanta |
          k | m-1 | Koeficient absorpce světla |
          KH,D | — | Korekční faktor vlhkosti pro NOx pro vznětové motory |
          KH,G | — | Korekční faktor vlhkosti pro NOx pro plynové motory |
          KV | | Kalibrační funkce CFV |
          KW,a | — | Korekční faktor převodu ze suchého stavu na vlhký stav pro nasávaný vzduch |
          KW,d | — | Korekční faktor převodu ze suchého stavu na vlhký stav pro ředicí vzduch |
          KW,e | — | Korekční faktor převodu ze suchého stavu na vlhký stav pro ředěný výfukový plyn |
          KW,r | — | Korekční faktor převodu ze suchého stavu na vlhký stav pro surový výfukový plyn |
          L | % | Procento točivého momentu z maximálního točivého momentu při zkušebních otáčkách |
          La | m | Efektivní délka optické dráhy |
          m | | Sklon kalibrační funkce PDP |
          mass | g/h nebo g | Index označující hmotnostní průtok emisí (nebo proporcionální hmotnostní průtok) |
          MDIL | kg | Hmotnost vzorku ředicího vzduchu prošlého filtry k odběru vzorků částic |
          Md | mg | Hmotnost vzorku částic odebraného z ředicího vzduchu |
          Mf | mg | Hmotnost odebraného vzorku částic |
          Mf,p | mg | Hmotnost vzorku částic odebraného na primárním filtru |
          Mf,b | mg | Hmotnost vzorku částic odebraného na koncovém filtru |
          MSAM | | Hmotnost vzorku zředěného výfukového plynu prošlého filtry k odběru částic |
          MSEC | kg | Hmotnost sekundárního ředicího vzduchu |
          MTOTW | kg | Celková hmotnost CVS za cyklus ve vlhkém stavu |
          MTOTW,i | kg | Okamžitá hmotnost CVS ve vlhkém stavu |
          N | % | Opacita |
          NP | — | Celkový počet otáček PDP za cyklus |
          NP,i | — | Počet otáček PDP za časový interval |
          n | min-1 | Otáčky motoru |
          np | s-1 | Otáčky PDP |
          nhi | min-1 | Horní otáčky motoru |
          nlo | min-1 | Dolní otáčky motoru |
          nref | min-1 | Referenční otáčky motoru pro zkoušku ETC |
          pa | kPa | Tlak nasycených par vzduchu nasávaného motorem |
          pA | kPa | Absolutní tlak |
          pB | kPa | Celkový atmosférický tlak |
          pd | kPa | Tlak nasycených par ředicího vzduchu |
          ps | kPa | Atmosférický tlak suchého vzduchu |
          p1 | kPa | Podtlak ve vstupu do čerpadla |
          P(a) | kW | Příkon pomocných zařízení namontovaných pro zkoušku |
          P(b) | kW | Příkon pomocných zařízení odmontovaných pro zkoušku |
          P(n) | kW | Netto výkon nekorigovaný |
          P(m) | kW | Výkon změřený na zkušebním stavu |
          Ω | — | Besselova konstanta |
          Qs | m3/s | Objemový průtok CVS |
          q | — | Ředicí poměr |
          r | — | Poměr ploch průřezu izokinetické sondy a výfukového potrubí |
          Ra | % | Relativní vlhkost nasávaného vzduchu |
          Rd | % | Relativní vlhkost ředicího vzduchu |
          Rf | — | Faktor odezvy FID |
          ρ | kg/m3 | Hustota |
          S | kW | Nastavení dynamometru |
          Si | m-1 | Okamžitá hodnota kouře |
          Sλ | | Faktor posunu λ |
          T | K | Absolutní teplota |
          Ta | K | Absolutní teplota nasávaného vzduchu |
          t | s | Doba měření |
          te | s | Doba elektrické odezvy |
          tF | s | Doba odezvy filtru pro Besselovu funkci |
          tp | s | Doba fyzikální odezvy |
          Δt | s | Časový interval mezi za sebou následujícími měřenými hodnotami kouře (= 1/četnost odběru vzorků) |
          Δti | s | Časový interval pro okamžitý průtok CFV |
          τ | % | Propustnost kouře |
          V0 | m3/ot | Objemový průtok PDP za skutečných podmínek |
          W | — | Wobbeho index |
          Wact | kWh | Skutečná práce cyklu při zkoušce ETC |
          Wref | kWh | Práce referenčního cyklu při zkoušce ETC |
          WF | — | Váhový faktor |
          WFE | — | Efektivní váhový faktor |
          X0 | m3/rev | Kalibrační funkce objemového průtoku PDP |
          Yi | m-1 | Besselova střední hodnota na 1 s pro kouř |
          2.32.2 Značky chemických složek
          CH4 | Methan |
          C2H6 | Ethan |
          C2H5OH | Ethanol |
          C3H8 | Propan |
          CO | Oxid uhelnatý |
          DOP | Dioktylftalát |
          CO2 | Oxid uhličitý |
          HC | Uhlovodíky |
          NMHC | Uhlovodíky jiné než methan |
          NOx | Oxidy dusíku |
          NO | Oxid dusnatý |
          NO2 | Oxid dusičitý |
          PT | Částice. |
          2.32.3 Zkratky
          CFV | Venturiho trubice kritického průtoku |
          CLD | Chemiluminiscenční detektor |
          ELR | Evropská zkouška se závislostí na zatížení |
          ESC | Evropská zkouška s ustáleným cyklem |
          ETC | Evropská zkouška s neustáleným cyklem |
          FID | Plamenoionizační detektor |
          GC | Plynový chromatograf |
          HCLD | Vyhřívaný chemiluminiscenční detektor |
          HFID | Vyhřívaný plamenoionizační detektor |
          LPG | Zkapalněný ropný plyn |
          NDIR | Nedisperzní analyzátor s absorpcí v infračerveném pásmu |
          NG | Zemní plyn |
          NMC | Separátor uhlovodíků jiných než methan |
          3. ŽÁDOST O ES SCHVÁLENÍ TYPU
          3.1 Žádost o ES schválení typu samostatného technického celku pro typ motoru nebo pro rodinu motorů
          3.1.1 Žádost o schválení typu motoru nebo rodiny motorů z hlediska úrovně emisí plynných znečišťujících látek a znečišťujících částic pro vznětové motory a z hlediska úrovně emisí plynných znečišťujících látek pro plynové motory podává výrobce motoru nebo jeho pověřený zástupce.
          3.1.2 K žádosti se ve trojím vyhotovení přiloží tyto dokumenty a údaje:
          3.1.2.1 popis typu motoru nebo popřípadě rodiny motorů, který obsahuje všechny údaje uvedené v příloze II této směrnice ve shodě s požadavky článků 3 a 4 směrnice 70/156/EHS ze dne 6. února 1970 o sbližování právních předpisů členských států týkajících se schvalování motorových vozidel a jejich přípojných vozidel [3].
          3.1.3 Technické zkušebně se ke zkouškám podle bodu 6 předloží motor, který odpovídá údajům o „typu motoru“ nebo o „základním motoru“ podle přílohy II.
          3.2 Žádost o ES schválení typu pro typ vozidla z hlediska jeho motoru
          3.2.1 Žádost o schválení typu vozidla z hlediska emisí plynných znečišťujících látek a znečišťujících částic z jeho vznětového motoru nebo z rodiny motorů a z hlediska emisí plynných znečišťujících látek z jeho plynového motoru nebo z rodiny motorů podává výrobce vozidla nebo jeho pověřený zástupce.
          3.2.2 K žádosti se ve trojím vyhotovení přiloží tyto dokumenty a údaje:
          3.2.2.1 popis typu vozidla, částí vozidla spojených s motorem a typu motoru, popřípadě rodiny motorů, se všemi údaji uvedenými v příloze II, spolu s dokumentací podle článku 3 směrnice 70/156/EHS.
          3.3 Žádost o ES schválení typu pro typ vozidla se schváleným motorem
          3.3.1 Žádost o schválení typu vozidla z hlediska emisí plynných znečišťujících látek a znečišťujících částic z jeho schváleného vznětového motoru nebo ze schválené rodiny motorů a z hlediska emisí plynných znečišťujících látek z jeho schváleného plynového motoru nebo ze schválené rodiny motorů podává výrobce vozidla nebo jeho pověřený zástupce.
          3.3.2 K žádosti se ve trojím vyhotovení přiloží tyto dokumenty a údaje:
          3.3.2.1 popis typu vozidla a částí vozidla spojených s motorem, se všemi údaji uvedenými v příloze II a výtisk certifikátu ES schválení typu (příloha VI) motoru nebo popřípadě rodiny motorů jako samostatného technického celku, který je instalován do typu vozidla, spolu s dokumentací podle článku 3 směrnice 70/156/EHS.
          4. ES SCHVÁLENÍ TYPU
          4.1 ES schválení typu s univerzální použitelností paliv
          ES schválení typu s univerzální použitelností paliv se udělí, jsou-li splněny tyto požadavky.
          4.1.1 U motorové nafty splňuje základní motor požadavky této směrnice s referenčním palivem uvedeným v příloze IV.
          4.1.2 U zemního plynu má základní motor prokázat schopnost přizpůsobit se jakémukoli složení paliva, které se může nabízet na trhu. U zemního plynu obecně existují dva druhy paliva: palivo s velkou výhřevností (plyn H) a palivo s malou výhřevností (plyn L), avšak s velkým rozptylem v obou skupinách. Liší se výrazně svým obsahem energie vyjádřeným Wobbeho indexem a svým faktorem Sλ posunu λ. Vzorce pro výpočet Wobbeho indexu a Sλ jsou uvedeny v bodech 2.27 a 2.28. Zemní plyny s faktorem posunu λ mezi 0,89 a 1,08 (0,89 ≤ Sλ ≤ 1,08) se pokládají za druh H, kdežto zemní plyny s faktorem posunu λ mezi 1,08 a 1,19 (1,08 ≤ Sλ ≤ 1,19) se pokládají za druh L. Složení referenčních paliv odráží extrémní proměnlivost Sλ.
          Základní motor musí splňovat požadavky této směrnice s referenčními palivy GR (palivo 1) a G25 (palivo 2) uvedenými v příloze IV, aniž by se provedlo jakékoli nové nastavení přívodu paliva mezi oběma zkouškami. Po změně paliva je však přípustný jeden přizpůsobovací proběh jedním cyklem ETC bez měření. Před zkouškou se musí základní motor zaběhnout podle postupu uvedeného v bodě 3 dodatku 2 k příloze III.
          4.1.2.1 Na žádost výrobce se motor může zkoušet s třetím palivem (palivo 3), jestliže faktor Sλ posunu λ leží mezi 0,89 (tj. dolní hodnota rozsahu GR) a 1,19 (tj. horní hodnota rozsahu G25), např. je-li palivo 3 palivem obvyklým na trhu. Výsledky této zkoušky se mohou použít jako základ pro hodnocení shodnosti výroby.
          4.1.3 U motoru na zemní plyn, který se může samočinně přizpůsobit jednak pro skupinu plynů H a jednak pro skupinu plynů L a u něhož se přepíná mezi skupinou H a skupinou L přepínačem, se musí základní motor zkoušet s odpovídajícím referenčním palivem uvedeným v příloze IV pro každou skupinu, při všech polohách přepínače. Tato paliva jsou GR (palivo 1) a G23 (palivo 3) pro skupinu plynů H a G25 (palivo 2) a G23 (palivo 3) pro skupinu plynů L. Základní motor musí splňovat požadavky této směrnice v obou polohách přepínače bez jakéhokoli nového nastavení přívodu paliva mezi oběma zkouškami provedenými při jedné a druhé poloze přepínače. Po změně paliva je však přípustný jeden přizpůsobovací proběh jedním cyklem ETC bez měření. Před zkouškou se musí základní motor zaběhnout podle postupu uvedeného v bodě 3 dodatku 2 k příloze III.
          4.1.3.1 Na žádost výrobce se motor může zkoušet s třetím palivem místo G23 (palivo 3), jestliže faktor Sλ posunu λ leží mezi 0,89 (tj. dolní hodnota rozsahu GR) a 1,19 (tj. horní hodnota rozsahu G25), např. je-li palivo 3 palivem obvyklým na trhu. Výsledky této zkoušky se mohou použít jako základ pro hodnocení shodnosti výroby.
          4.1.4 U motorů na zemní plyn se určí poměr výsledků měření emisí r pro každou znečišťující látku takto:
          r = výsledek měření emisí pro referenční palivo 2výsledek měření emisí pro referenční palivo 1
          nebo
          ra = výsledek měření emisí pro referenční palivo 2výsledek měření emisí pro referenční palivo 3
          a
          rb = výsledek měření emisí pro referenční palivo 1výsledek měření emisí pro referenční palivo 3.
          4.1.5 U LPG má základní motor prokázat schopnost přizpůsobit se jakémukoli složení paliva, které se může nabízet na trhu. U LPG kolísá složení C3/C4. Tato kolísání se odrážejí v referenčních palivech. Základní motor musí splňovat požadavky na emise s referenčními palivy A a B uvedenými v příloze IV, aniž by se provedlo jakékoli nové nastavení přívodu paliva mezi oběma zkouškami. Po změně paliva je však přípustný jeden přizpůsobovací proběh jedním cyklem ETC bez měření. Před zkouškou se musí základní motor zaběhnout podle postupu uvedeného v bodě 3 dodatku 2 k příloze III.
          4.1.5.1 Poměr výsledků měření emisí r se určí pro každou znečišťující látku takto:
          r = výsledek měření emisí pro referenční palivo Bvýsledek měření emisí pro referenční palivo A.
          4.2 Udělení ES schválení typu s omezenou použitelností paliv
          ES schválení typu s omezenou použitelností paliv se udělí, jestliže jsou splněny tyto požadavky.
          4.2.1 Schválení typu z hlediska emisí z výfuku pro motor na zemní plyn a konstruovaný pro provoz jak se skupinou plynů H, tak se skupinou plynů L.
          Základní motor se zkouší s odpovídajícím referenčním palivem uvedeným v příloze IV pro danou skupinu. Tato paliva jsou GR (palivo 1) a G23 (palivo 3) pro skupinu plynů H a G25 (palivo 2) a G23 (palivo 3) pro skupinu plynů L. Základní motor musí splňovat požadavky této směrnice bez jakéhokoli nového nastavení přívodu paliva mezi oběma zkouškami. Po změně paliva je však přípustný jeden přizpůsobovací proběh jedním cyklem ETC bez měření. Před zkouškou se musí základní motor zaběhnout podle postupu uvedeného v bodě 3 dodatku 2 k příloze III.
          4.2.1.1 Na žádost výrobce se motor může zkoušet s třetím palivem místo G23 (palivo 3), jestliže faktor Sλ posunu λ leží mezi 0,89 (tj. dolní hodnota rozsahu GR) a 1,19 (tj. horní hodnota rozsahu G25), např. je-li palivo 3 palivem obvyklým na trhu. Výsledky této zkoušky se mohou použít jako základ pro hodnocení shodnosti výroby.
          4.2.1.2 Poměr výsledků měření emisí r se určí pro každou znečišťující látku takto:
          r = výsledek měření emisí pro referenční palivo 2výsdelek měření emisí pro referenční palivo 1
          nebo
          ra = výsledek měření emisí pro referenční palivo 2výsdelek měření emisí pro referenční palivo 3
          a
          rb = výsledek měření emisí pro referenční palivo 1výsledek měření emisí pro referenční palivo 3.
          4.2.1.3 Při dodání zákazníkovi musí být na motoru štítek (viz bod 5.1.5), udávající pro kterou skupinu plynů je motor schválen jako typ.
          4.2.2 Schválení typu z hlediska emisí z výfuku pro motor na zemní plyn nebo na LPG a konstruovaný pro provoz s jedním specifickým složením paliva
          4.2.2.1 Základní motor musí splňovat požadavky na emise s referenčními palivy GR a G25 v případě zemního plynu nebo s referenčními palivy A a B v případě LPG, podle požadavků přílohy IV. Mezi zkouškami je přípustné jemné seřízení palivového systému. Toto jemné seřízení se skládá z překalibrování databáze palivového systému, aniž by přitom došlo ke změně základní strategie řízení nebo základní struktury databáze. Jestliže je to nutné, připouští se výměna částí, které mají přímý vztah k průtočnému množství paliva (jako jsou vstřikovací trysky).
          4.2.2.2 Na přání výrobce se motor může zkoušet s referenčními palivy GR a G23 nebo G25 a G23, přičemž schválení typu platí pouze pro skupinu plynů H nebo v druhém případě pro skupinu plynů L.
          4.2.2.3 Při dodání zákazníkovi musí být na motoru štítek (viz bod 5.1.5), udávající pro které složení paliva byl motor kalibrován.
          4.3 Schválení typu z hlediska emisí z výfuku pro člena rodiny motorů
          4.3.1 Kromě případu uvedeného v bodě 4.3.2 se rozšíří schválení typu základního motoru bez dalšího zkoušení na všechny členy rodiny motorů pro všechna složení paliva ve skupině, pro kterou byl základní motor schválen jako typ (v případě motorů popsaných v bodě 4.2.2), nebo pro tutéž skupinu paliv (v případě motorů popsaných buď v bodě 4.1, nebo v bodě 4.2), pro kterou byl základní motor schválen jako typ.
          4.3.2 Sekundární zkušební motor
          Jestliže v případě žádosti o schválení typu motoru nebo vozidla z hlediska jeho motoru, který přísluší do rodiny motorů, zjistí technická zkušebna, že z hlediska vybraného základního motoru předložená žádost ne zcela reprezentuje rodinu motorů definovanou v dodatku 1 k příloze I, může technická zkušebna vybrat a zkoušet alternativní referenční zkušební motor, a jestliže je to potřebné, další referenční zkušební motor.
          4.4 Certifikát schválení typu
          Pro schválení typu uvedené v bodech 3.1, 3.2 a 3.3 se vydá certifikát odpovídající vzoru v příloze VI.
          5. OZNAČENÍ MOTORU
          5.1 Motor schválený jako samostatný technický celek musí být označen:
          5.1.1 výrobní nebo obchodní značkou výrobce motoru;
          5.1.2 obchodním názvem výrobce;
          5.1.3 číslem ES schválení typu, před kterým je umístěno rozlišovací písmeno (písmena) nebo číslo státu, který udělil ES schválení typu [4];
          5.1.4 jedním z následujících označení, umístěných za číslem ES schválení typu u motoru na zemní plyn:
          - H u motoru schváleného a kalibrovaného pro skupinu plynů H,
          - L u motoru schváleného a kalibrovaného pro skupinu plynů L,
          - HL u motoru schváleného a kalibrovaného jak pro skupinu plynů H, tak pro skupinu plynů L,
          - Ht u motoru schváleného a kalibrovaného pro specifické složení plynu ve skupině plynů H a přestavitelného jemným seřízením palivového systému motoru pro jiný specifický plyn ve skupině plynů H,
          - Lt u motoru schváleného a kalibrovaného pro specifické složení plynu ve skupině plynů L a přestavitelného jemným seřízením palivového systému motoru pro jiný specifický plyn ve skupině plynů L,
          - HLt u motoru schváleného a kalibrovaného pro specifické složení plynu ve skupině plynů H nebo ve skupině plynů L a přestavitelného jemným seřízením palivového systému motoru pro jiný specifický plyn ve skupině plynů H nebo ve skupině plynů L.
          5.1.5 Štítky
          U motorů na zemní plyn a na LPG se schválením typu s omezenou použitelností paliv se použijí následující štítky:
          5.1.5.1 Obsah
          Musí být uvedeny tyto údaje:
          V případě bodu 4.2.1.3 musí být na štítku uvedeno
          "POUŽÍVAT JEN SE ZEMNÍM PLYNEM SKUPINY H". V případě potřeby se "H"nahradí "L".
          V případě bodu 4.2.2.3 musí být na štítku uvedeno
          "POUŽÍVAT JEN SE ZEMNÍM PLYNEM SPECIFIKACE …" nebo popřípadě "POUŽÍVAT JEN SE ZKAPALNĚNÝM ROPNÝM PLYNEM SPECIFIKACE …". Musí se uvést všechny údaje z odpovídající tabulky (tabulek) v příloze IV spolu s jednotlivými složkami a mezními hodnotami uvedenými výrobcem motoru.
          Výška písmen a číslic musí být nejméně 4 mm.
          Poznámka:
          Jestliže takové označení není možné z důvodu nedostatku místa, může se použít zjednodušený kód. V takovém případě musí být vysvětlení obsahující všechny výše uvedené údaje snadno dostupné každému, kdo plní palivovou nádrž nebo provádí údržbu nebo opravu motoru a jeho příslušenství, a také příslušným orgánům. Umístění a obsah tohoto vysvětlení budou stanoveny dohodou mezi výrobcem a schvalovacím orgánem.
          5.1.5.2 Vlastnosti
          Štítky musí mít trvanlivost po dobu životnosti motoru. Štítky musí být snadno čitelné a jejich písmena a číslice musí být nesmazatelné. Kromě toho připojení štítků musí být trvanlivé po dobu životnosti motoru a nesmí být možné, aby se daly odstranit, aniž by byly přitom zničeny nebo se jejich nápis stal nečitelným.
          5.1.5.3 Umístění
          Štítky musí být umístěny na části motoru, která je nezbytná pro běžný provoz motoru a která obvykle nevyžaduje výměnu v průběhu života motoru. Kromě toho musí být tyto štítky umístěny tak, aby byly dobře viditelné pro osobu o průměrné velikosti po tom, co na motor byla namontována všechna pomocná zařízení nutná pro provoz motoru.
          5.2 Při žádosti o ES schválení typu pro typ vozidla z hlediska jeho motoru musí být označení uvedené v bodě 5.1.5 umístěno také těsně u otvoru k plnění paliva.
          5.3 Při žádosti o ES schválení typu pro typ vozidla s motorem schváleným jako typ musí být označení uvedené v bodě 5.1.5 umístěno také těsně u otvoru k plnění paliva.
          6. POŽADAVKY A ZKOUŠKY
          6.1 Obecně
          6.1.1 Zařízení pro regulaci emisí
          6.1.1.1 Konstrukční části schopné ovlivnit emise plynných znečišťujících látek a znečišťujících částic ze vznětových motorů a plynných znečišťujících látek z plynových motorů musí být navrženy, konstruovány, sestaveny a instalovány tak, aby umožnily motoru za běžného používání splnit požadavky této směrnice.
          6.1.2 Funkce zařízení pro regulaci emisí
          6.1.2.1 Je zakázáno používat odpojovací zařízení nebo nenormální strategie pro regulaci emisí.
          6.1.2.2 Na motoru nebo na vozidle může být instalováno pomocné řídicí zařízení za podmínky, že toto zařízení:
          - je v činnosti jen za podmínek jiných, než jsou uvedeny v bodě 6.1.2.4 nebo
          - je aktivováno jen dočasně za podmínek uvedených v bodě 6.1.2.4 pro takové účely, jako je ochrana motoru před poškozením, ochrana zařízení pro ovládání proudění vzduchu, omezení tvorby kouře, studený start nebo zahřívání nebo
          - je aktivováno jen palubními signály pro účely, jako je provozní bezpečnost nebo nouzový provoz.
          6.1.2.3 Zařízení, funkce, systém nebo opatření k řízení motoru, které jsou v činnosti za podmínek uvedených v bodě 6.1.2.4 a výsledkem toho je použití strategie řízení motoru rozdílné nebo změněné proti strategii běžně používané v průběhu odpovídajících zkušebních cyklů emisí, jsou přípustné, jestliže se při plnění požadavků podle bodů 6.1.3 nebo 6.1.4 plně prokáže, že opatření nezhoršuje účinnost systému regulace emisí. Ve všech ostatních případech se taková zařízení pokládají za odpojovací zařízení.
          6.1.2.4 Pro účely bodu 6.1.2.2 jsou stanoveny tyto podmínky používání za ustáleného stavu a za přechodových podmínek:
          - nadmořská výška nepřekračující 1000 m (nebo nepřekračující ekvivalentní atmosférický tlak 90 kPa),
          - teplota okolí v rozmezí od 283 do 303 K (10 °C až 30 °C),
          - teplota chladiva motoru v rozmezí od 343 do 368 K (70 °C až 95 °C).
          6.1.3 Zvláštní požadavky na elektronické systémy regulace emisí
          6.1.3.1 Požadavky na dokumentaci
          Výrobce musí předložit soubor dokumentace, který dává přehled o základní koncepci systému a o prostředcích, kterými tento systém řídí své výstupní veličiny, ať již je toto řízení přímé, nebo nepřímé.
          Dokumentace se musí skládat ze dvou částí:
          a) ze složky formální dokumentace, která se předá technické zkušebně při předání žádosti o schválení typu, musí obsahovat úplný popis systému. Tato dokumentace může být stručná, za podmínky, že je z ní zřejmé, že v ní byly uvedeny všechny výstupní veličiny, které mohou vzniknout z každé možné konstelace jednotlivých vstupních veličin. Tato informace musí být připojena k dokumentaci požadované v bodě 3 přílohy I;
          b) z doplňkových podkladů udávajících parametry, jež jsou měněny kterýmkoli pomocným řídicím zařízením, a mezní podmínky, v kterých zařízení pracuje. Doplňkové podklady musí obsahovat popis řídicí logiky palivového systému, strategie regulace a body přepínání v průběhu všech provozních stavů.
          Doplňkové podklady musí také obsahovat zdůvodnění pro použití každého pomocného řídicího zařízení a zahrnovat doplňkové podklady a údaje ze zkoušek, aby se prokázalo, jaký vliv má na emise z výfuku každé pomocné řídicí zařízení instalované na motoru nebo na vozidle.
          Tyto doplňkové podklady musí zůstat přísně důvěrné a jsou uloženy u výrobce, avšak musí být předloženy k inspekci při schvalování typu nebo kdykoli v průběhu platnosti schválení typu.
          6.1.4 K ověření, zda by určitá strategie nebo opatření měly být pokládány za odpojovací zařízení nebo za nenormální strategii pro regulaci emisí podle definic v bodech 2.29 a 2.31, může schvalovací orgán nebo technická zkušebna vyžadovat navíc zkoušku měření NOx podle zkušebního cyklu ETC, která se může vykonat v kombinaci buď se zkouškou pro schválení typu, nebo s postupy k ověření shodnosti výroby.
          6.1.4.1 Alternativně k požadavkům dodatku 4 k příloze III je možné odebírat vzorky emisí NOx ze surového výfukového plynu v průběhu měření podle zkušebního cyklu ETC, přičemž se postupuje podle technických požadavků ISO DIS 16183 ze dne 15. října 2000.
          6.1.4.2 K ověření, zda určitá strategie nebo opatření mají být pokládány za odpojovací zařízení nebo za nenormální strategii pro regulaci emisí podle definic v bodech 2.28 a 2.30, je přijatelné zvětšení dané mezní hodnoty pro NOx o 10 %.
          6.1.5 Přechodná ustanovení pro rozšíření schválení typu
          6.1.5.1 Tento bod se vztahuje jen na nové vznětové motory a nová vozidla poháněná vznětovým motorem, jejichž typ byl schválen podle požadavků řádku A tabulky v bodě 6.2.1.
          6.1.5.2 Alternativně k bodům 6.1.3 a 6.1.4 může výrobce předložit technické zkušebně výsledky zkoušky měření NOx podle zkušebního cyklu ETC na motoru majícím charakteristiky základního motoru, který byl popsán v příloze II. Přitom se vezmou v úvahu body 6.1.4.1 a 6.1.4.2. Výrobce musí také předložit písemné prohlášení, že motor nepoužívá žádné odpojovací zařízení nebo nenormální strategii pro regulaci emisí definované v bodě 2 této přílohy.
          6.1.5.3 Výrobce musí rovněž vydat písemné prohlášení, že výsledky zkoušky měření NOx a prohlášení o základním motoru, které předkládá podle bodu 6.1.4, platí také pro všechny typy motorů v rodině popsané v příloze II.
          6.2 Požadavky na emise plynných znečišťujících látek, znečišťujících částic a kouře
          Pro schvalování typu podle řádku A tabulek v bodě 6.2.1 se emise musí měřit zkouškami ESC a ELR u konvenčních vznětových motorů včetně motorů s elektronickým zařízením ke vstřikování paliva, s recirkulací výfukových plynů nebo s oxidačními katalyzátory. Vznětové motory s moderními systémy následného zpracování výfukových plynů včetně katalyzátorů NOx nebo zachycovačů částic musí být kromě toho podrobeny zkoušce ETC.
          Pro schvalování typu podle řádku B1 nebo B2 nebo řádku C tabulek v bodě 6.2.1 se emise musí měřit zkouškami ESC, ELR a ETC.
          U plynových motorů se musí plynné emise měřit zkouškou ETC.
          Postupy zkoušek ESC a ELR jsou popsány v dodatku 1 k příloze III, postup zkoušky ETC v dodatcích 2 a 3 k příloze III.
          Emise plynných znečišťujících látek a popřípadě znečišťujících částic a popřípadě kouře z motoru předaného ke zkoušení se měří metodami popsanými v dodatku 4 k příloze III. Příloha V popisuje doporučené analytické systémy pro plynné znečišťující látky, doporučené systémy k odběru částic a doporučený systém k měření kouře.
          Jiné systémy nebo analyzátory musí být schváleny technickou zkušebnou, jestliže se shledá, že dávají rovnocenné výsledky při odpovídajícím zkušebním cyklu. Určení rovnocennosti systému se musí zakládat na korelační studii zahrnující 7 dvojic vzorků (nebo více dvojic) a porovnávající uvažovaný systém s jedním z referenčních systémů uvedených v této směrnici. Pro emise znečišťujících částic se uznává jako referenční systém pouze plnoprůtočný systém s ředěním. "Výsledky" se vztahují na hodnotu emisí specifického cyklu. Korelační zkoušky se musí provést v téže laboratoři, v téže zkušební buňce a s tímtéž motorem a pokud možno se provedou současně. Kritérium rovnocennosti je splněno, jestliže střední hodnoty zkušebních dvojic souhlasí na ± 5 %. K přijetí nového systému do směrnice se musí určení rovnocennosti zakládat na výpočtu opakovatelnosti a reprodukovatelnosti podle normy ISO 5725.
          6.2.1 Mezní hodnoty
          Specifická hmotnost oxidu uhelnatého, celkových uhlovodíků, oxidů dusíku a částic určených zkouškou ESC a opacita kouře určená zkouškou ELR nesmějí překročit hodnoty uvedené v tabulce 1.
          Tabulka 1
          Mezní hodnoty – zkoušky ESC a ELR
          Řádek | Hmotnost oxidu uhelnatého (CO) g/kWh | Hmotnost uhlovodíků (HC) g/kWh | Hmotnost oxidů dusíku (NOx) g/kWh | Hmotnost částic (PT) g/kWh | Kouř m–1 |
          A (2000) | 2,1 | 0,66 | 5,0 | 0,10 | 0,13 [5] | 0,8 |
          B 1 (2005) | 1,5 | 0,46 | 3,5 | 0,02 | 0,5 |
          B 2 (2008) | 1,5 | 0,46 | 2,0 | 0,02 | 0,5 |
          C (EEV) | 1,5 | 0,25 | 2,0 | 0,02 | 0,15 |
          U vznětových motorů, které jsou navíc podrobeny zkoušce ETC, a zvláště u plynových motorů, nesmějí specifické hmotnosti oxidu uhelnatého, uhlovodíků jiných než methan, methanu (kde to připadá v úvahu), oxidů dusíku a částic (kde to připadá v úvahu) překročit hodnoty uvedené v tabulce 2.
          Tabulka 2
          Mezní hodnoty - zkoušky ETC
          Řádek | Hmotnost oxidu uhelnatého (CO) g/kWh | Hmotnost uhlovodíků jiných nežmethan (NMHC) g/kWh | Hmotnost methanu (CH4) [6] g/kWh | Hmotnost oxidů dusíku (NOx) g/kWh | Hmotnost částic (PT) [7] g/kWh |
          A (2000) | 5,45 | 0,78 | 1,6 | 5,0 | 0,16 | 0,21 [8] |
          B 1 (2005) | 4,0 | 0,55 | 1,1 | 3,5 | 0,03 |
          B 2 (2008) | 4,0 | 0,55 | 1,1 | 2,0 | 0,03 |
          C (EEV) | 3,0 | 0,40 | 0,65 | 2,0 | 0,02 |
          6.2.2 Měření uhlovodíků u vznětových motorů a plynových motorů
          6.2.2.1 Výrobce může zvolit měření hmotnosti celkových uhlovodíků (THC) zkouškou ETC místo měření hmotnosti uhlovodíků jiných než methan. V tomto případě je mezní hodnota hmotnosti celkových uhlovodíků stejná, jako je hodnota uvedená v tabulce 2 pro hmotnost uhlovodíků jiných než methan.
          6.2.3 Zvláštní požadavky na vznětové motory
          6.2.3.1 Specifická hmotnost oxidů dusíku měřená v náhodně zvolených zkušebních bodech v kontrolním rozsahu zkoušky ESC nesmí překročit o více než 10 % hodnoty interpolované ze sousedních zkušebních režimů (viz body 4.6.2 a 4.6.3 dodatku 1 k příloze III).
          6.2.3.2 Hodnota kouře při náhodně zvolených otáčkách zkoušky ELR nesmí překročit největší hodnotu kouře ze dvou sousedních zkušebních otáček o více než 20 % nebo mezní hodnotu o více než 5 %, podle toho, která je větší.
          7. INSTALACE DO VOZIDLA
          7.1 Instalace motoru do vozidla musí z hlediska schválení typu motoru splňovat tyto vlastnosti:
          7.1.1 podtlak v sání nesmí být vyšší než podtlak uvedený pro schválený typ motoru v příloze VI;
          7.1.2 protitlak ve výfuku nesmí být vyšší než protitlak uvedený pro schválený typ motoru v příloze VI;
          7.1.3 objem systému výfuku se nesmí lišit o více než 40 % od objemu uvedeného pro schválený typ motoru v příloze VI;
          7.1.4 výkon absorbovaný pomocnými zařízeními nutnými pro provoz motoru nesmí překročit výkon uvedený pro schválený typ motoru v příloze VI.
          8. RODINA MOTORŮ
          8.1 Parametry definující rodinu motorů
          Rodina motorů určená výrobcem motoru může být definována základními vlastnostmi, které musí být společné motorům této rodiny. V některých případech se mohou parametry navzájem ovlivňovat. Tyto vlivy se musí brát v úvahu, aby se zajistilo, že do rodiny motorů jsou včleněny pouze motory, které mají z hlediska emisí znečišťujících látek podobné vlastnosti.
          Aby mohly být motory pokládány za motory patřící do téže rodiny motorů, musí mít stejný tento seznam základních parametrů:
          8.1.1 Spalovací cyklus:
          - dvoudobý,
          - čtyřdobý.
          8.1.2 Chladicí médium:
          - vzduch,
          - voda,
          - olej.
          8.1.3 U plynových motorů a u motorů se zařízením k následnému zpracování výfukových plynů
          - počet válců
          (jiné vznětové motory s menším počtem válců, než má základní motor, se mohou pokládat za motory patřící do téže rodiny motorů, pokud systém dodávky paliva odměřuje palivo pro každý jednotlivý válec).
          8.1.4 Zdvihový objem jednotlivého válce:
          - motory musí být v celkovém rozmezí 15 %.
          8.1.5 Způsob nasávání vzduchu:
          - atmosférické sání,
          - přeplňování,
          - přeplňování s chladičem přeplňovaného vzduchu.
          8.1.6 Druh / konstrukce spalovacího prostoru:
          - předkomůrka,
          - vířivá komůrka,
          - otevřený spalovací prostor.
          8.1.7 Ventily a kanály - uspořádání, rozměry a počet:
          - hlava válců,
          - stěna válce,
          - kliková skříň.
          8.1.8 Systém vstřikování paliva (vznětové motory):
          - čerpadlo – potrubí – vstřikovací tryska,
          - řadové vstřikovací čerpadlo,
          - čerpadlo s rozdělovačem,
          - jednotlivý prvek,
          - vstřikovací jednotka.
          8.1.9 Systém přívodu paliva (plynové motory):
          - směšovací zařízení,
          - přívod / přípusť (jednobodové, vícebodové),
          - vstřikování kapaliny (jednobodové, vícebodové).
          8.1.10 Systém zapalování (plynové motory).
          8.1.11 Různé vlastnosti:
          - recirkulace výfukových plynů
          - vstřikování vody / emulze,
          - přípusť sekundárního vzduchu,
          - chlazení přeplňovacího vzduchu.
          8.1.12 Následné zpracování výfukových plynů:
          - třícestný katalyzátor,
          - oxidační katalyzátor,
          - redukční katalyzátor,
          - tepelný reaktor,
          - zachycovač částic.
          8.2 Volba základního motoru
          8.2.1 Vznětové motory
          Hlavním kritériem při volbě základního motoru rodiny je největší dodávka paliva na jeden zdvih při deklarovaných otáčkách maximálního točivého momentu. V případě, kdy toto hlavní kritérium plní zároveň dva nebo více motorů, užije se jako druhé kritérium pro volbu základního motoru největší dodávka paliva na jeden zdvih při jmenovitých otáčkách. Za určitých okolností může schvalovací orgán rozhodnout, že nejhorší případ emisí rodiny motorů je možno nejlépe určit zkouškou druhého motoru. Schvalovací orgán pak může vybrat ke zkoušce další motor, jehož vlastnosti nasvědčují tomu, že bude pravděpodobně mít nejvyšší úroveň emisí v této rodině motorů.
          Jestliže motory rodiny mají další proměnné vlastnosti, které by mohly být pokládány za vlastnosti ovlivňující emise z výfuku, musí se tyto vlastnosti také určit a brát v úvahu při volbě základního motoru.
          8.2.2 Plynové motory
          Hlavním kritériem při volbě základního motoru rodiny je největší zdvihový objem. V případě, kdy toto hlavní kritérium splňují zároveň dva nebo více motorů, užije se jako druhé kritérium pro volbu základního motoru v tomto pořadí:
          - největší dodávka paliva na zdvih při otáčkách deklarovaného jmenovitého výkonu,
          - největší předstih zážehu,
          - nejmenší poměr recirkulace výfukových plynů,
          - motor nemá čerpadlo vzduchu nebo má čerpadlo s nejmenším skutečným průtokem vzduchu.
          Za určitých okolností může schvalovací orgán dojít k závěru, že nejhorší případ emisí rodiny motorů je možno nejlépe určit zkouškou druhého motoru. Schvalovací orgán pak může vybrat ke zkoušce další motor, jehož vlastnosti nasvědčují tomu, že pravděpodobně bude mít nejvyšší úroveň emisí v této rodině motorů.
          9. SHODNOST VÝROBY
          9.1 K zajištění shodnosti výroby se musí přijmout opatření podle článku 10 směrnice 70/156/EHS. Shodnost výroby se kontroluje na základě údajů v certifikátu schválení typu, jehož vzor je uveden v příloze VI této směrnice.
          Pokud příslušné orgány nepokládají za vyhovující postup kontroly u výrobce, použijí se body 2.4.2 a 2.4.3 přílohy X směrnice 70/156/EHS.
          9.1.1 Jestliže se měří emise znečišťujících látek a schválení typu motoru bylo jednou nebo vícekrát rozšířeno, provedou se zkoušky na motorech popsaných ve schvalovací dokumentaci, která se týká daného rozšíření.
          9.1.1.1 Shodnost motoru, který byl podroben zkoušce emisí znečišťujících látek:
          Po předání motorů správnímu orgánu nesmí výrobce provádět na vybraných motorech jakákoli seřízení.
          9.1.1.1.1 Ze série se namátkově odeberou tři motory. Motory, pro jejichž schválení typu podle řádku A tabulek v bodě 6.2.1 jsou předepsány jen zkoušky ESC a ELR nebo jen zkouška ETC, se pro kontrolu shodnosti výroby podrobí vhodným použitelným zkouškám. Se souhlasem správního orgánu se pro kontrolu shodnosti výroby podrobí všechny ostatní motory, jejichž typ byl schválen podle řádku A, B1 nebo B2 nebo C tabulek v bodě 6.2.1, buď zkouškám ESC a ELR, nebo zkoušce ETC. Mezní hodnoty jsou uvedeny v bodě 6.2.1 této přílohy.
          9.1.1.1.2 Pokud příslušný orgán souhlasí se směrodatnou odchylkou výroby udanou výrobcem podle přílohy X směrnice 70/156/EHS, která se vztahuje na motorová vozidla a jejich přípojná vozidla, provedou se zkoušky podle dodatku 1 k této příloze.
          Pokud příslušný orgán nesouhlasí se směrodatnou odchylkou výroby udanou výrobcem podle přílohy X směrnice 70/156/EHS, která se vztahuje na motorová vozidla a jejich přípojná vozidla, provedou se zkoušky podle dodatku 2 k této příloze.
          Na žádost výrobce se mohou zkoušky provést podle dodatku 3 k této příloze.
          9.1.1.1.3 Na základě zkoušky odebraných motorů se výrobky určité série pokládají za shodné, pokud podle zkušebních kritérií v odpovídajícím dodatku byl dosažen úspěšný výsledek pro všechny znečišťující látky, a za neshodné, pokud byl dosažen neúspěšný výsledek pro jedinou znečišťující látku.
          Jestliže byl dosažen úspěšný výsledek pro jednu znečišťující látku, nelze tento výsledek změnit žádnými doplňkovými zkouškami určenými k dosažení určitého výsledku pro ostatní znečišťující látky.
          Jestliže nebyl dosažen žádný úspěšný výsledek pro všechny znečišťující látky a jestliže nebyl dosažen žádný neúspěšný výsledek pro jednu znečišťující látku, podrobí se zkoušce jiný motor (viz obrázek 2).
          Výrobce může kdykoli rozhodnout o zastavení zkoušek, jestliže nebylo dosaženo žádného výsledku. V tom případě se zaznamená neúspěšný výsledek.
          9.1.1.2 Zkoušky se provedou s nově vyrobenými motory. Plynové motory se zaběhnou podle postupu uvedeného v bodě 3 dodatku 2 k příloze III.
          9.1.1.2.1 Na žádost výrobce se však mohou zkoušky provést se vznětovými nebo plynovými motory, které byly zaběhnuty po dobu delší, než je uvedena v bodě 9.1.1.2, avšak nejvýše 100 hodin. V tomto případě záběh provede výrobce, který však nesmí motory jakkoli seřizovat.
          9.1.1.2.2 Pokud výrobce žádá o souhlas se záběhem podle bodu 9.1.1.2.1, může se tento záběh provést na:
          - všech motorech, které se zkoušejí, nebo
          - na prvním zkoušeném motoru, s určením součinitele vývoje emisí takto:
          - emise znečišťujících látek se změří při nule hodin a při x hodinách na prvním zkoušeném motoru,
          - součinitel vývoje emisí mezi nulou hodin a x hodinami se vypočte pro každou znečišťující látku z poměru:
          emise při x hodinách / emise při nule hodin,
          tento poměr může být menší než 1.
          Další motory určené ke zkoušce se nezabíhají, avšak jejich hodnoty emisí při nule hodin se upraví součinitelem vývoje emisí.
          V tomto případě se uvažují tyto hodnoty:
          - hodnoty při x hodinách pro první motor,
          - hodnoty při nule hodin násobené součinitelem vývoje emisí pro ostatní motory.
          9.1.1.2.3 U vznětových motorů a u plynových motorů pracujících s LPG mohou všechny tyto zkoušky proběhnout s palivem obchodní jakosti. Na žádost výrobce lze však použít referenční palivo podle přílohy IV. To znamená, že zkoušky, které jsou popsány v bodě 4 této přílohy, se provedou s nejméně dvěma z referenčních paliv pro každý plynový motor.
          9.1.1.2.4 U motorů na zemní plyn se mohou všechny tyto zkoušky provést s palivem obchodní jakosti takto:
          - u motorů označených písmenem H s palivem obchodní jakosti skupiny H (0,89 ≤ Sλ ≤ 1,00),
          - u motorů označených písmenem L s palivem obchodní jakosti skupiny L (1,00 ≤ Sλ ≤ 1,19),
          - u motorů označených písmeny HL s palivem obchodní jakosti s extrémním rozsahem faktoru posunu (0,89 ≤ Sλ ≤ 1,19).
          Na žádost výrobce lze však použít referenční paliva podle přílohy IV. To znamená provedení zkoušek, které jsou popsány v bodě 4 této přílohy.
          9.1.1.2.5 V případě sporu způsobeného nevyhověním plynových motorů při použití paliva obchodní jakosti se musí zkoušky provést s referenčním palivem, s kterým byl zkoušen základní motor, nebo popřípadě s dalším palivem 3 podle bodu 4.1.3.1 a 4.2.1.1, s kterým mohla být provedena zkouška základního motoru. Výsledky se pak musí přepočítat s použitím odpovídajícího faktoru (faktorů) r, ra nebo rb podle bodů 4.1.4, 4.1.5.1 a 4.2.1.2. Jestliže r, ra nebo rb jsou menší než jedna, korekce se neprovádí. Změřené výsledky a vypočtené výsledky musí prokázat, že motor splňuje mezní hodnoty se všemi odpovídajícími palivy (paliva 1, 2 a popřípadě 3 u motorů na zemní plyn nebo paliva A a B u motorů na LPG).
          9.1.1.2.6 Zkoušky shodnosti výroby plynového motoru konstruovaného pro provoz s jedním specifickým složením paliva se provedou s palivem, pro které byl motor kalibrován.
          Obrázek 2
          Schéma zkoušek shodnosti výroby
          +++++ TIFF +++++
          Zkouška tří motorůVýpočet statistického údaje zkouškyDává statistický údaj zkoušky podle odpovídajícího dodatku hodnoty odpovídajícíkritériím nevyhovění série pro nejméně jednu zněčišťující látku?NEANODává statistický údaj zkoušky podle odpovídajícího dodatku hodnoty odpovídajícíkritériím vyhovění série pro nejméně jednu znečišťující látku?NESérie seodmítneANOANOSérie sepřijmeBylo dosaženo hodnoty o dpovídající kritériu vyhovění pro jednu nebo vícezněčišťujících látek?Bylo dosaženo hodnoty o dpovídající kritériu vyhovění pro všechny zněčišťujícíchlátky?NEZkouška dalšího motoru
          [1] Úř. věst. L 76, 6.4.1970, s. 1. Směrnice naposledy pozměněná směrnicí Komise 2003/76/ES (Úř. věst. L 291, 15.8.2003, s. 29).
          [2] Úř. věst. L 375, 31.12.1980, s. 46. Směrnice naposledy pozměněná směrnicí Komise 1999/99/ES (Úř. věst. L 334, 28.12.1999, s. 32).
          [3] Úř. věst. L 42, 23.2.1970, s. 1. Směrnice naposledy pozměněná směrnicí Komise 2004/104/ES (Úř. věst. L 337, 13.11.2004, s. 13).
          [4] 1 = Německo, 2 = Francie, 3 = Itálie, 4 = Nizozemsko, 5 = Švédsko, 6 = Belgie, 7 = Maďarsko, 8 = Česká republika, 9 = Španělsko, 11 = Spojené království, 12 = Rakousko, 13 = Lucembursko, 17 = Finsko, 18 = Dánsko, 20 = Polsko, 21 = Portugalsko, 23 = Řecko, 24 = Irsko, 26 = Slovinsko, 27 = Slovensko, 29 = Estonsko, 32 = Lotyšsko, 36 = Litva, 49 = Kypr, 50 = Malta.
          [5] Pro motory se zdvihovým objemem menším než 0,75 dm3 na válec a s otáčkami při jmenovitém výkonu vyššími než 3000 min-1.
          [6] Jen pro motory na zemní plyn.
          [7] Neplatí pro plynové motory pro etapu A a etapy B1 a B2.
          [8] Pro motory se zdvihovým objemem menším než 0,75 dm3 na válec a s otáčkami jmenovitého výkonu vyššími než 3000 min-1.
          --------------------------------------------------
          Dodatek 1
          POSTUP ZKOUŠEK KONTROLY SHODNOSTI VÝROBY, POKUD JE SMĚRODATNÁ ODCHYLKA VYHOVUJÍCÍ
          1. V tomto dodatku je popsán postup, který se použije pro ověření shodnosti výroby z hlediska zkoušky emisí znečišťujících látek, pokud je směrodatná odchylka výroby udaná výrobcem vyhovující.
          2. Při vzorku o velikosti nejméně tří motorů je postup výběru vzorku nastaven tak, aby byla pravděpodobnost, že série vyhoví zkoušce, při 40 % vadných motorů rovna 0,95 (riziko výrobce = 5 %), a pravděpodobnost, že série vyhoví zkoušce, byla při 65 % vadných motorů rovna 0,1 (riziko spotřebitele = 10 %).
          3. Pro každou ze znečišťujících látek uvedených v bodě 6.2.1 přílohy I se použije tento postup (viz obrázek 2):
          L = přirozený logaritmus mezní hodnoty pro znečišťující látku;
          χi = přirozený logaritmus hodnoty naměřené u i-tého motoru vzorku;
          s = odhadnutá směrodatná odchylka výroby (po stanovení přirozených logaritmů měřených hodnot);
          n = velikost vzorku.
          4. Pro každý soubor vzorků se vypočte součet směrodatných odchylek od mezní hodnoty podle tohoto vzorce:
          1sΣi=1nL-χi
          5. Pak:
          - je-li statistický údaj zkoušky větší než hodnota úspěšného výsledku uvedená pro velikost vzorku v tabulce 3, byl dosažen úspěšný ýsledek pro danou znečišťující látku,
          - je-li statistický údaj zkoušky menší než hodnota neúspěšného výsledku uvedená pro velikost vzorku v tabulce 3, byl dosažen neúspěšný výsledek pro danou znečišťující látku,
          - nastane-li jiný případ, přezkouší se další motor podle bodu 9.1.1.1 přílohy I a postup výpočtu se aplikuje na velikost vzorku o jeden motor větší.
          Tabulka 3
          Hodnoty kritérií úspěšného a neúspěšného výsledku pro plán odběru vzorků podle dodatku 1
          Nejmenší velikost vzorku: 3
          Kumulativní počet zkoušených motorů (velikost vzorku) | Hodnota úspěšného výsledku An | Hodnota neúspěšného výsledku Bn |
          3 | 3,327 | – 4,724 |
          4 | 3,261 | – 4,790 |
          5 | 3,195 | – 4,856 |
          6 | 3,129 | – 4,922 |
          7 | 3,063 | – 4,988 |
          8 | 2,997 | – 5,054 |
          9 | 2,931 | – 5,120 |
          10 | 2,865 | – 5,185 |
          11 | 2,799 | – 5,251 |
          12 | 2,733 | – 5,317 |
          13 | 2,667 | – 5,383 |
          14 | 2,601 | – 5,449 |
          15 | 2,535 | – 5,515 |
          16 | 2,469 | – 5,581 |
          17 | 2,403 | – 5,647 |
          18 | 2,337 | – 5,713 |
          19 | 2,271 | – 5,779 |
          20 | 2,205 | – 5,845 |
          21 | 2,139 | – 5,911 |
          22 | 2,073 | – 5,977 |
          23 | 2,007 | – 6,043 |
          24 | 1,941 | – 6,109 |
          25 | 1,875 | – 6,175 |
          26 | 1,809 | – 6,241 |
          27 | 1,743 | – 6,307 |
          28 | 1,677 | – 6,373 |
          29 | 1,611 | – 6,439 |
          30 | 1,545 | – 6,505 |
          31 | 1,479 | – 6,571 |
          32 | – 2,112 | – 2,112 |
          --------------------------------------------------
          Dodatek 2
          POSTUP ZKOUŠEK KONTROLY SHODNOSTI VÝROBY, POKUD JE SMĚRODATNÁ ODCHYLKA NEVYHOVUJÍCÍ NEBO NENÍ K DISPOZICI
          1. V tomto dodatku je popsán postup, který se použije pro ověření shodnosti výroby z hlediska zkoušky emisí znečišťujících látek, pokud je směrodatná odchylka výroby daná výrobcem buď nevyhovující, nebo není k dispozici.
          2. Při vzorku o velikosti nejméně tří motorů je postup výběru vzorku nastaven tak, aby byla pravděpodobnost, že série vyhoví zkoušce, při 40 % vadných motorů rovna 0,95 (riziko výrobce = 5 %), a pravděpodobnost, že série vyhoví zkoušce, byla při 65 % vadných motorů rovna 0,1 (riziko spotřebitele= 10 %).
          3. Rozdělení měřených hodnot znečišťujících látek uvedených v bodě 6.2.1 přílohy I se pokládá za logaritmicko-normální a tyto hodnoty se musí nejdříve transformovat stanovením jejich přirozených logaritmů. Písmenné značky m0 a m značí minimální a maximální velikosti vzorku (m0 = 3 a m = 32); a písmenná značka n značí velikost zpracovávaného vzorku.
          4. Jsou-li přirozené logaritmy hodnot měřených v sérii χ1, χ2 …, χi, a L je přirozený logaritmus mezní hodnoty dané znečišťující látky, pak platí:
          di = χi - L
          a
          dn‾ = 1nΣi=1ndivn2 = 1nΣi=1ndi - dn‾2
          5. Tabulka 4 udává hodnoty kritéria vyhovění (An) a kritéria neúspěšného výsledku Bn v závislosti na velikosti zpracovávaného vzorku. Statistický údaj zkoušek je poměr: dn‾ / Vn a užije se pro rozhodnutí, zda série uspěla, nebo neuspěla, takto:
          pro m0 ≤ n < m:
          - série uspěla, jestliže dn‾ / vn ≤ An,
          - série uspěla, jestliže dn‾ / vn ≥ Bn,
          - je potřebné další měření, jestliže An < dn‾ / vn < Bn.
          6. Poznámky
          Pro výpočet následujících hodnot statistického výsledku zkoušek jsou užitečné tyto vzorce:
          dn‾ = 1 - 1n dn-1‾ + 1n dn
          Vn2 = 1 - 1nVn-12 + dn‾ - dn2n - 1
          n = 2, 3, …; d1‾ = d1; V1 = 0
          Tabulka 4
          Hodnoty kritérií úspěšného a neúspěšného výsledku pro plán odběru vzorků podle dodatku 2
          Nejmenší velikost vzorku: 3
          Kumulativní počet zkoušených motorů (velikost vzorku) | Hodnota úspěšného výsledku An | Hodnota neúspěšného výsledku Bn |
          3 | - 0,80381 | 16,64743 |
          4 | - 0,76339 | 7,68627 |
          5 | - 0,72982 | 4,67136 |
          6 | - 0,69962 | 3,25573 |
          7 | - 0,67129 | 2,45431 |
          8 | - 0,64406 | 1,94369 |
          9 | - 0,61750 | 1,59105 |
          10 | - 0,59135 | 1,33295 |
          11 | - 0,56542 | 1,13566 |
          12 | - 0,53960 | 0,97970 |
          13 | - 0,51379 | 0,85307 |
          14 | - 0,48791 | 0,74801 |
          15 | - 0,46191 | 0,65928 |
          16 | - 0,43573 | 0,58321 |
          17 | - 0,40933 | 0,51718 |
          18 | - 0,38266 | 0,45922 |
          19 | - 0,35570 | 0,40788 |
          20 | - 0,32840 | 0,36203 |
          21 | - 0,30072 | 0,32078 |
          22 | - 0,27263 | 0,28343 |
          23 | - 0,24410 | 0,24943 |
          24 | - 0,21509 | 0,21831 |
          25 | - 0,18557 | 0,18970 |
          26 | - 0,15550 | 0,16328 |
          27 | - 0,12483 | 0,13880 |
          28 | - 0,09354 | 0,11603 |
          29 | - 0,06159 | 0,09480 |
          30 | - 0,02892 | 0,07493 |
          31 | - 0,00449 | 0,05629 |
          32 | - 0,03876 | 0,03876 |
          --------------------------------------------------
          Dodatek 3
          POSTUP OVĚŘENÍ KONTROLY SHODNOSTI VÝROBY NA ŽÁDOST VÝROBCE
          1. Tento dodatek popisuje postup, který se použije na žádost výrobce k ověření shodnosti výroby z hlediska zkoušky emisí znečišťujících látek.
          2. Při vzorku o velikosti nejméně tří motorů je postup výběru vzorku nastaven tak, aby byla pravděpodobnost, že série vyhoví zkoušce, při 30 % vadných motorů rovna 0,90 (riziko výrobce = 10 %), a pravděpodobnost, že série vyhoví zkoušce, byla při 65 % vadných výrobků rovna 0,1 (riziko spotřebitele = 10 %).
          3. Pro každou ze znečišťujících látek uvedených v bodě 6.2.1 přílohy I se použije tento postup (viz obrázek 2):
          L = mezní hodnota pro znečišťující látku,
          xi = měřená hodnota pro i-tý motor vzorku,
          n = velikost vzorku.
          4. Pro vzorek se vypočte statistický údaj zkoušek, který kvantifikuje počet nevyhovujících motorů, tj. xi ≥ L.
          5. Pak:
          - je-li statistický údaj zkoušek menší nebo roven hodnotě úspěšného výsledku uvedené pro velikost vzorku v tabulce 5, bylo dosaženo úspěšného výsledku pro danou znečišťující látku,
          - je-li statistický údaj zkoušek větší nebo roven hodnotě neúspěšného výsledku uvedené pro velikost vzorku v tabulce 5, bylo dosaženo neúspěšného výsledku pro danou znečišťující látku,
          - nastane-li jiný případ, přezkouší se další motor podle bodu 9.1.1.1 přílohy I a postup výpočtu se aplikuje na velikost vzorku o jeden motor větší.
          V tabulce 5 jsou hodnoty úspěšného a neúspěšného výsledku vypočteny podle normy ISO 8422/1991.
          Tabulka 5
          Hodnoty kritérií úspěšného a neúspěšného výsledku pro plán odběru vzorků podle dodatku 3
          Nejmenší velikost vzorku: 3
          Kumulativní počet zkoušených motorů (velikost vzorku) | Hodnota úspěšného výsledku | Hodnota neúspěšného výsledku |
          3 | — | 3 |
          4 | 0 | 4 |
          5 | 0 | 4 |
          6 | 1 | 5 |
          7 | 1 | 5 |
          8 | 2 | 6 |
          9 | 2 | 6 |
          10 | 3 | 7 |
          11 | 3 | 7 |
          12 | 4 | 8 |
          13 | 4 | 8 |
          14 | 5 | 9 |
          15 | 5 | 9 |
          16 | 6 | 10 |
          17 | 6 | 10 |
          18 | 7 | 11 |
          19 | 8 | 9 |
          --------------------------------------------------
          PŘÍLOHA II
          0. OBECNĚ
          0.1 Značka (název podniku):
          0.2 Typ a obchodní název (uveďte případné varianty):
          0.3 Způsob a umístění označení typu, je-li na vozidle vyznačen:
          0.4 Případná kategorie vozidla:
          0.5 Kategorie motoru: vznětový / na NG / na LPG / na ethanol (1):
          0.6 Jméno a adresa výrobce:
          0.7 Umístění povinných štítků a údajů a způsob jejich připevnění:
          0.8 U konstrukčních částí a samostatných technických celků umístění a způsob připevnění značky ES schválení typu:
          0.9 Adresa montážního závodu (závodů):
          1. Podstatné vlastnosti (základního) motoru a informace o provedení zkoušky
          2. Podstatné vlastnosti rodiny motorů
          3. Podstatné vlastnosti typů motorů v rodině
          4. Vlastnosti konstrukčních částí vozidla spojených s motorem (pokud se příloha týká vozidla)
          5. Fotografie nebo výkresy základního motoru / typu motoru a popřípadě motorového prostoru
          6. Seznam dalších případných příloh
          +++++ TIFF +++++
          [1] Nehodící se škrtněte.
          --------------------------------------------------
          Dodatek 1
          1. Popis motoru
          1.1 Výrobce:
          1.2 Kód motoru, daný výrobcem:
          1.3 Cyklus: čtyřdobý / dvoudobý [2]:
          1.4 Počet a uspořádání válců:
          1.4.1 Vrtání: mm
          1.4.2 Zdvih: mm
          1.4.3 Pořadí zapalování:
          1.5 Zdvihový objem motoru: cm3
          1.6 Kompresní objemový poměr [3]:
          1.7 Výkres (výkresy) spalovací komory a dna pístu:
          1.8 Nejmenší: průřez sacích a výfukových kanálů: cm2
          1.9 Volnoběžné otáčky: ot/min
          1.10 Maximální netto výkon: kW při ot/min
          1.11 Maximální přípustné otáčky motoru: ot/min
          1.12 Maximální netto točivý moment: Nm při ot/min
          1.13 Systém spalování: vznětové zapalování / zážehové zapalování(2)
          1.14 Palivo: motorová nafta / LPG / NG-H / NG-L / NG-HL/ ethanol(2)
          1.15 Systém chlazení
          1.15.1 Kapalinou
          1.15.1.1 Druh kapaliny:
          1.15.1.2 Oběhové čerpadlo (čerpadla): ano / ne (2)
          1.15.1.3 Vlastnosti nebo značka (značky) a typ (typy):
          1.15.1.4 Popřípadě převodový poměr (poměry) (pokud připadá v úvahu):
          1.15.2 Vzduchem
          1.15.2.1 Ventilátor: ano / ne (2)
          1.15.2.2 Vlastnosti nebo značka (značky) a typ (typy) (pokud připadá v úvahu):
          1.15.2.3 Popřípadě převodový poměr (poměry) (pokud připadá v úvahu):
          1.16 Přípustná teplota podle výrobce
          1.16.1 Chlazení kapalinou: maximální teplota na výstupu: K
          1.16.2 Chlazení vzduchem: vztažný bod:
          Maximální teplota ve vztažném bodě: K
          +++++ TIFF +++++
          1.16.3 (Případná) Maximální teplota vzduchu na výstupu výměníku sání:
          K
          1.16.4 Maximální teplota výfukových plynů ve výfukových trubkách u vnějších přírub výfukových potrubí nebo turbokompresorů:
          K
          1.16.5 Teplota paliva: minimální K, maximální K
          u vznětových motorů na vstupu do vstřikovacího čerpadla, u plynových motorů v koncovém stupni regulátoru tlaku
          1.16.6 Tlak paliva: minimální kPa, maximální kPa
          v koncovém stupni regulátoru tlaku, jen u motorů na NG
          1.16.7 Teplota maziva: minimální K, maximální K
          1.17 Přeplňování: ano / ne [4]
          1.17.1 Značka:
          1.17.2 Typ:
          1.17.3 Popis systému (např. maximální přeplňovací tlak, popřípadě odpouštěcí zařízení):
          1.17.4 Mezichladič ano / ne (1)
          1.18 Systém sání
          Maximální přípustný podtlak v sání při jmenovitých otáčkách motoru a při plném zatížení, které jsou vymezeny pro provozní podmínky ve směrnici Rady 80/1269/EHS ze dne 16. prosince 1980 o sbližování právních předpisů členských států týkajících se výkonu motorů motorových vozidel [5]:
          kPa
          1.19 Výfukový systém
          Maximální přípustný protitlak ve výfuku při jmenovitých otáčkách motoru a při plném zatížení, které jsou vymezeny pro provozní podmínky ve směrnici 80/1269/EHS:
          kPa
          Objem výfukového systému: dm3
          2. Opatření proti znečišťování ovzduší
          2.1 Zařízení k recirkulaci plynů z klikové skříně (popis a výkresy):
          2.2 Přídavná zařízení proti znečišťování ovzduší (pokud existují a nejsou uvedena v jiném bodu)
          2.2.1 Katalyzátor: ano / ne (1)
          2.2.1.1 Značka (značky):
          2.2.1.2 Typ (typy):
          2.2.1.3 Počet katalyzátorů a částí:
          2.2.1.4 Rozměry, tvar a objem katalyzátoru (katalyzátorů):
          2.2.1.5 Druh katalytické činnosti:
          2.2.1.6 Celková náplň drahých kovů:
          +++++ TIFF +++++
          2.2.1.7 Poměrná koncentrace:
          2.2.1.8 Nosič (struktura a materiál):
          2.2.1.9 Hustota komůrek:
          2.2.1.10 Druh pouzdra katalyzátoru (katalyzátorů):
          2.2.1.11 Umístění katalyzátoru (katalyzátorů) (místo a vztažná vzdálenost ve výfukovém potrubí):
          2.2.2 Kyslíková sonda: ano / ne [6]
          2.2.2.1 Značka (značky):
          2.2.2.2 Typ:
          2.2.2.3 Umístění:
          2.2.3 Přípusť vzduchu: ano / ne (1)
          2.2.3.1 Druh (pulzující vzduch, vzduchové čerpadlo atd.):
          2.2.4 Recirkulace výfukových plynů: ano / ne (1)
          2.2.4.1 Vlastnosti (průtok atd.):
          2.2.5 Zachycovač částic: ano / ne (1)
          2.2.5.1 Rozměry, tvar a objem zachycovače částic:
          2.2.5.2 Druh a konstrukce zachycovače částic:
          2.2.5.3 Umístění (místo a vztažná vzdálenost ve výfukovém potrubí):
          2.2.5.4 Postup nebo systém regenerace, popis nebo výkres:
          2.2.6 Jiné systémy: ano / ne (1)
          2.2.6.1 Popis a funkce:
          3. Dodávka paliva
          3.1 Vznětové motory
          3.1.1 Podávací palivové čerpadlo
          Tlak [7]: kPa nebo charakteristický diagram (1):
          3.1.2 Systém vstřikování
          3.1.2.1 Čerpadlo
          3.1.2.1.1 Značka (značky):
          3.1.2.1.2 Typ (typy):
          3.1.2.1.3 Dodávka mm3/zdvih při otáčkách motoru ot/min při plném vstřiku nebo charakteristický diagram (1) (2):
          Uvést použitou metodu: na motoru / na zkušebním stavu čerpadla (1)
          Při regulaci řízené přeplňovacím tlakem uvést charakteristickou dodávku paliva a přeplňovací tlak v závislosti na otáčkách motoru.
          3.1.2.1.4 Předvstřik
          3.1.2.1.4.1 Křivka předvstřiku (2):
          3.1.2.1.4.2 Statické časování vstřiku (2):
          3.1.2.2 Vstřikovací potrubí
          3.1.2.2.1 Délka: mm
          3.1.2.2.2 Vnitřní průměr: mm
          3.1.2.3 Vstřikovač (vstřikovače)
          +++++ TIFF +++++
          3.1.2.3.1 Značka (značky):
          3.1.2.3.2 Typ (typy):
          3.1.2.3.3 Otevírací tlak: kPa (2)
          nebo charakteristický diagram [8] [9]:
          3.1.2.4 Regulátor
          3.1.2.4.1 Značka (značky):
          3.1.2.4.2 Typ (typy):
          3.1.2.4.3 Otáčky, při kterých začíná omezení, při plném zatížení: ot/min
          3.1.2.4.4 Maximální otáčky bez zatížení: ot/min
          3.1.2.4.5 Volnoběžné otáčky: ot/min
          3.1.3 Systém pro studený start
          3.1.3.1 Značka (značky):
          3.1.3.2 Typ (typy):
          3.1.3.3 Popis:
          3.1.3.4 Pomocný startovací prostředek:
          3.1.3.4.1 Značka:
          3.1.3.4.2 Typ:
          3.2 Plynové motory [10]
          3.2.1 Palivo: zemní plyn / LPG (1)
          3.2.2 Regulátor (regulátory) tlaku nebo odpařovač / regulátor (regulátory) tlaku (2)
          3.2.2.1 Značka (značky):
          3.2.2.2 Typ (typy):
          3.2.2.3 Počet stupňů redukce tlaku:
          3.2.2.4 Tlak v koncovém stupni: min. kPa, max. kPa
          3.2.2.5 Počet hlavních seřizovacích bodů:
          3.2.2.6 Počet seřizovacích bodů volnoběhu:
          3.2.2.7 Číslo osvědčení podle směrnice 1999/96/ES [11]:
          3.2.3. Palivový systém: směšovač / přípusť plynu / vstřik kapaliny / přímý vstřik (1)
          3.2.3.1 Regulace směsi:
          3.2.3.2 Popis systému nebo schéma a výkresy:
          3.2.3.3 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.4 Směšovač
          3.2.4.1 Číslo:
          3.2.4.2 Značka (značky):
          3.2.4.3 Typ (typy):
          3.2.4.4 Umístění:
          3.2.4.5 Možnosti seřizování:
          +++++ TIFF +++++
          3.2.4.6 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.5 Vstřikování do sběrného sacího potrubí
          3.2.5.1 Vstřikování: jednobodové / vícebodové [12]
          3.2.5.2 Vstřikování: kontinuální / simultánní / postupně časované (1)
          3.2.5.3 Vstřikovací zařízení
          3.2.5.3.1 Značka (značky):
          3.2.5.3.2 Typ (typy):
          3.2.5.3.3 Možnosti seřizování:
          3.2.5.3.4 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.5.4 Podávací čerpadlo (pokud připadá v úvahu):
          3.2.5.4.1 Značka (značky):
          3.2.5.4.2 Typ (typy):
          3.2.5.4.3 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.5.5 Vstřikovače
          3.2.5.5.1 Značka (značky):
          3.2.5.5.2 Typ (typy):
          3.2.5.5.3 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.6 Přímé vstřikování
          3.2.6.1. Vstřikovací čerpadlo / regulátor tlaku (1)
          3.2.6.1.1 Značka (značky):
          3.2.6.1.2 Typ (typy):
          3.2.6.1.3 Časování vstřiku:
          3.2.6.1.4 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.6.2 Vstřikovače
          3.2.6.2.1 Značka (značky):
          3.2.6.2.2 Typ (typy):
          3.2.6.2.3 Otevírací tlak nebo charakteristický diagram [13]:
          3.2.6.2.4 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.7 Elektronické řídicí zařízení (ECU)
          3.2.7.1 Značka (značky):
          3.2.7.2 Typ (typy):
          3.2.7.3 Možnosti seřizování:
          3.2.8 Zařízení specifické pro zemní plyn
          3.2.8.1 Varianta 1
          (jen u schvalování typu motorů pro několik specifických složení paliva)
          +++++ TIFF +++++
          3.2.8.1.1 Složení paliva:
          methan (CH4): | základní: % mol | min. % mol | max. % mol |
          ethan (C2H6): | základní: % mol | min. % mol | max. % mol |
          propan (C3H8): | základní: % mol | min. % mol | max. % mol |
          butan (C4H10): | základní: % mol | min. % mol | max. % mol |
          C5/C5+: | základní: % mol | min. % mol | max. % mol |
          kyslík (O2): | základní: % mol | min. % mol | max. % mol |
          inertní plyny (N2, He atd.): | základní: % mol | min. % mol | max. % mol |
          3.2.8.1.2 Vstřikovače (vstřikovače)
          3.2.8.1.2.1 Značka (značky):
          3.2.8.1.2.2 Typ (typy):
          3.2.8.1.3 Popřípadě jiné
          3.2.8.2 Varianta 2
          (jen u schvalování typu pro několik specifických složení paliva)
          4. Časování ventilů
          4.1 Maximální zdvih ventilů a úhly otevření a zavření vzhledem k úvratím nebo rovnocenné údaje:
          4.2 Referenční nebo seřizovací rozsahy nastavení [14]:
          5. Systém zapalování (jen u zážehových motorů)
          5.1 Druh systému zapalování: společná cívka a svíčky / jednotlivé cívky a svíčky / jiné (blíže určete) (1)
          5.2 Řídicí zařízení zapalování
          5.2.1 Značka (značky):
          5.2.2 Typ (typy):
          5.3 Křivka předstihu zapalování / zobrazení pole předstihu (1) [15]:
          5.4 Časování zážehu (2): stupňů před horní úvratí při otáčkách ot/min a při podtlaku v sání Pa
          5.5 Zapalovací svíčky
          5.5.1 Značka (značky):
          5.5.2 Typ (typy):
          5.5.3 Nastavení mezery mezi elektrodami: mm
          5.6 Zapalovací cívka (cívky)
          5.6.1 Značka (značky):
          5.6.2 Typ (typy):
          +++++ TIFF +++++
          6. Zařízení poháněná motorem
          Motor se musí předat ke zkouškám se zařízeními potřebnými k provozu motoru (např. s ventilátorem, vodním čerpadlem atd.) vymezenými pro provozní podmínky ve směrnici 80/1269/EHS, příloha I bod 5.1.1.
          6.1 Zařízení, která se namontují pro zkoušku
          Jestliže není možné nebo vhodné instalovat zařízení na zkušební stav, určí se příkon těchto zařízení a odečte se od výkonu motoru, který byl změřen v celém provozním rozsahu zkušebního cyklu (cyklů).
          6.2 Zařízení, která se pro zkoušku odmontují
          Zařízení, která jsou potřebná jen k provozu vozidla (např. vzduchový kompresor, systém klimatizace vzduchu atd.), se musí pro zkoušku odmontovat. Když zařízení není možno odmontovat, může se určit příkon těchto zařízení a připočítat k výkonu motoru, který byl změřen v celém provozním rozsahu zkušebního cyklu (cyklů).
          7. Doplňkové informace o podmínkách zkoušky
          7.1 Užité mazivo
          7.1.1 Značka:
          7.1.2 Typ:
          (Uvést procento oleje v palivu, je-li palivo a mazivo smíšeno):
          7.2 Zařízení poháněná motorem (pokud připadá v úvahu)
          Příkon zařízení je nutno určit jen tehdy:
          - jestliže zařízení potřebné k provozu motoru není namontováno na motoru, nebo
          - jestliže zařízení, které není potřebné k provozu motoru, je namontováno na motoru.
          7.2.1 Výčet a údaje pro identifikaci:
          7.2.2 Příkon při jednotlivých uvedených otáčkách motoru:
          Zařízení | Příkon (kW) při různých otáčkách motoru |
          Volnoběh | Nízké otáčky | Vysoké otáčky | Otáčky A (1) | Otáčky B (1) | Otáčky C (1) | Referenční otáčky (2) |
          P(a) Zařízení potřebná k provozu motoru (odečte se od změřeného výkonu motoru), viz bod 6.1. | | | | | | | |
          P(b) Zařízení nepotřebná k provozu motoru (připočítá se ke změřenému výkonu motoru), viz bod 6.2. | | | | | | | |
          +++++ TIFF +++++
          8. Výkon motoru
          8.1 Otáčky motoru [18]
          Dolní otáčky (nlo): min-1
          Horní otáčky (nhi): min-1
          pro cykly ESC a ELR
          Volnoběh: min-1
          Otáčky A: min-1
          Otáčky B: min-1
          Otáčky C: min-1
          pro cyklus ETC
          Referenční otáčky: min-1
          8.2 Výkon motoru (měřený podle směrnice 80/1269/EHS) v kW
          | Otáčky motoru |
          Volnoběh | Otáčky A (1) | Otáčky B (1) | Otáčky C (1) | Referenční otáčky (2) |
          P(m) Výkon změřený na zkušebním stavu | | | | | |
          P(a) Příkon pomocných zařízení, která se namontují pro zkoušku (bod 6.1) — jsou-li namontována — nejsou-li namontována | 0 | 0 | 0 | 0 | 0 |
          P(b) Příkon pomocných zařízení, která se odmontují pro zkoušku (bod 6.2) — jsou-li namontována — nejsou-li namontována | 0 | 0 | 0 | 0 | 0 |
          P(n) Netto výkon motoru = P(m) – P(a) + P(b) | | | | | |
          +++++ TIFF +++++
          8.3 Nastavení dynamometru (kW)
          Nastavení dynamometru pro zkoušky ESC a ELR a pro referenční cyklus zkoušky ETC musí být provedena na základě netto výkonu motoru P(n) uvedeného v bodě 8.2. Doporučuje se instalovat motor na zkušební stav v netto podmínkách. V tomto případě jsou P(m) a P(n) totožné. Jestliže je provoz motoru v netto podmínkách nemožný nebo nevhodný, upraví se nastavení dynamometru na netto podmínky podle výše uvedeného vzorce.
          8.3.1 Zkoušky ESC a ELR
          Nastavení dynamometru se vypočtou podle vzorce v bodě 1.2 dodatku 1 k příloze III.
          Procento zatížení | Otáčky motoru |
          Volnoběh | Otáčky A | Otáčky B | Otáčky C |
          10 | — | | | |
          25 | — | | | |
          50 | — | | | |
          75 | — | | | |
          100 | | | | |
          8.3.2 Zkouška ETC
          Jestliže se motor nezkouší za netto podmínek, musí výrobce motoru předložit korekční vzorec k přepočítání změřeného výkonu nebo změřené práce cyklu podle bodu 2 dodatku 2 k příloze III na netto výkon nebo netto práci cyklu pro celý provozní rozsah cyklu a tento vzorec musí schválit technická zkušebna.
          +++++ TIFF +++++
          [1] Pro nekonvenční motory a systémy dodá výrobce údaje rovnocenné údajům zde požadovaným.
          [2] Nehodící se škrtněte.
          [3] Uvést dovolenou odchylku.
          [4] Nehodící se škrtněte.
          [5] Úř. věst. L 375, 31.12.1980, s. 46. Směrnice naposledy pozměněná směrnicí Komise 1999/99/ES (Úř. věst. L 334, 28.12.1999, s. 32).
          [6] Nehodící se škrtněte.
          [7] Uvést dovolenou odchylku.
          [8] Nehodící se škrtněte.
          [9] Uvést dovolenou odchylku.
          [10] U jinak uspořádaných systémů uveďte rovnocenné údaje (pro bod 3.2).
          [11] Směrnice Evropského parlamentu a Rady 1999/96/ES ze dne 13. prosince 1999 o sbližování právních předpisů členských států týkajících se opatření proti emisím plynných znečišťujících látek a znečišťujícich částic ze vznětových motorů vozidel a emisím plynných znečišťujících látek ze zážehových motorů vozidel poháněných zemním plynem nebo zkapalněným ropným plynem (Úř. věst. L 44, 16.2.2000, s. 1.
          [12] Nehodící se škrtněte.
          [13] Uvést dovolenou odchylku.
          [14] Nehodící se škrtněte.
          [15] Uvést dovolenou odchylku.
          [16] Zkouška ESC.
          [17] Pouze zkouška ETC.
          [18] Uveďte dovolenou odchylku; musí být v rozmezí ±3 % hodnot uvedených výrobcem.
          [19] Zkouška ESC.
          [20] Pouze zkouška ETC.
          --------------------------------------------------
          Dodatek 2
          PODSTATNÉ VLASTNOSTI RODINY MOTORŮ
          1. Společné parametry
          1.1 Spalovací cyklus:
          1.2 Chladicí médium:
          1.3 Počet válců [1]:
          1.4 Zdvihový objem jednotlivého válce:
          1.5 Způsob plnění vzduchem:
          1.6 Druh / konstrukce spalovacího prostoru:
          1.7 Uspořádání ventilů a kanálů, rozměr a počet:
          1.8 Palivový systém:
          1.9 Systém zapalování (plynové motory):
          1.10 Další vybavení:
          - chlazení přeplňovacího vzduchu [1]:
          - recirkulace výfukových plynů [1]:
          - vstřik vody / emulze [1]:
          - přípusť vzduchu [1]:
          1.11 Následné zpracování výfukových plynů [1]:
          Důkaz o identickém poměru (nebo u základního motoru o nejnižším poměru): kapacita systému / dodávka paliva na zdvih podle čísla (čísel) na diagramu:
          2. Seznam rodiny motorů
          2.1 Název rodiny vznětových motorů:
          2.1.1 Požadavky na motory v této rodině:
          | Základní motor |
          Typ motoru | | | | | |
          Počet válců | | | | | |
          Jmenovité otáčky (min-1) | | | | | |
          Dodávka paliva na zdvih (mm3) | | | | | |
          Jmenovitý netto výkon (kW) | | | | | |
          Otáčky při maximálním točivém momentu (min-1) | | | | | |
          Dodávka paliva na zdvih (mm3) | | | | | |
          Maximální točivý moment (Nm) | | | | | |
          Dolní volnoběžné otáčky (min-1) | | | | | |
          Zdvihový objem (v % zdvihového objemu základního motoru) | | | | | 100 |
          +++++ TIFF +++++
          2.2 Název rodiny plynových motorů:
          2.2.1 Požadavky na motory v této rodině:
          | Základní motor |
          Typ motoru | | | | | |
          Počet válců | | | | | |
          Jmenovité otáčky (min-1) | | | | | |
          Dodávka paliva na zdvih (mg) | | | | | |
          Jmenovitý netto výkon (kW) | | | | | |
          Otáčky při maximálním točivém momentu (min-1) | | | | | |
          Dodávka paliva na zdvih (mm3) | | | | | |
          Maximální točivý moment (Nm) | | | | | |
          Dolní volnoběžné otáčky (min-1) | | | | | |
          Zdvihový objem (v % zdvihového objemu základního motoru) | | | | | 100 |
          Časování zapalování | | | | | |
          Průtok recirkulace výfukových plynů | | | | | |
          Čerpadlo vzduchu ano/ne | | | | | |
          Skutečný výtlak čerpadla vzduchu | | | | | |
          +++++ TIFF +++++
          [1] Je-li bezpředmětné, uveďte "ne".
          --------------------------------------------------
          Dodatek 3
          1. Popis motoru
          1.1 Výrobce:
          1.2 Kód motoru, daný výrobcem:
          1.3 Cyklus: čtyřdobý / dvoudobý [2]
          1.4 Počet a uspořádání válců:
          1.4.1 Vrtání: mm
          1.4.2 Zdvih: mm
          1.4.3 Pořadí zapalování:
          1.5 Zdvihový objem motoru: cm3
          1.6 Objemový kompresní poměr [3]
          1.7 Výkres (výkresy) spalovacího prostoru a hlavy pístu:
          1.8 Nejmenší průřez sacích a výfukových kanálů: cm2
          1.9 Volnoběžné otáčky: ot/min
          1.10 Maximální netto výkon: kW při ot/min
          1.11 Maximální přípustné otáčky motoru: ot/min
          1.12 Maximální netto točivý moment: Nm při ot/min
          1.13 Systém spalování: vznětový / zážehový [2]
          1.14 Palivo: motorová nafta / LPG / NG-H / NG-L / NG-HL / ethanol [2]
          1.15 Systém chlazení
          1.15.1 Kapalinou
          1.15.1.1 Druh kapaliny:
          1.15.1.2 Oběhové čerpadlo (čerpadla): ano / ne [2]
          1.15.1.3 Popřípadě vlastnosti nebo značka (značky) a typ (typy):
          1.15.1.4 Popřípadě převodový poměr (poměry) pohonu:
          1.15.2 Vzduchem
          1.15.2.1 Ventilátor: ano / ne [2]
          1.15.2.2 Popřípadě vlastnosti nebo značka (značky) a typ (typy):
          1.15.2.3 Popřípadě převodový poměr (poměry) pohonu:
          1.16 Teplota přípustná podle výrobce
          1.16.1 Chlazení kapalinou: maximální teplota na výstupu: K
          1.16.2 Chlazení vzduchem:
          vztažný bod:
          +++++ TIFF +++++
          1.16.3 Popřípadě maximální teplota vzduchu ve výstupu mezichladiče sání: K
          1.16.4 Maximální teplota výfukových plynů ve výfukovém potrubí (potrubích) v blízkosti výstupní příruby (přírub) sběrného výfukového potrubí nebo přeplňovacího turbokompresoru (turbokompresorů): K
          1.16.5 Teplota paliva: minimální K, maximální: K
          u vznětových motorů ve vstupu do vstřikovacího čerpadla, u plynových motorů v koncovém stupni regulátoru tlaku
          1.16.6 Tlak paliva: minimální: kPa, maximální: kPa
          v koncovém stupni regulátoru tlaku, jen u plynových motorů na NG
          1.16.7 Teplota maziva: minimální: K, maximální: K
          1.17 Přeplňování: ano / ne [4]
          1.17.1 Značka:
          1.17.2 Typ:
          1.17.3 Popis systému (např. maximální přeplňovací tlak, popřípadě odlehčovací ventil):
          1.17.4 Mezichladič: ano / ne [4]
          1.18 Systém sání
          Maximální přípustný podtlak v sání při jmenovitých otáčkách motoru a při plném zatížení podle provozních podmínek stanovených ve směrnici 80/1269/EHS:
          kPa
          1.19 Výfukový systém
          Maximální přípustný protitlak výfuku při jmenovitých otáčkách motoru a při plném zatížení podle provozních podmínek stanovených ve směrnici 80/1269/EHS:
          kPa
          Objem výfukového systému: cm3
          2. Opatření proti znečišťování ovzduší
          2.1 Zařízení pro recyklaci plynů z klikové skříně (popis a výkresy):
          2.2 Přídavná zařízení proti znečišťování (pokud existují a nejsou uvedena v jiných bodech)
          2.2.1 Katalyzátor: ano / ne [4]
          2.2.1.1 Značka (značky):
          2.2.1.2 Typ (typy):
          2.2.1.3 Počet katalyzátorů a částí:
          2.2.1.4 Rozměry, tvar a objem katalyzátoru (katalyzátorů):
          2.2.1.5 Druh katalytické činnosti:
          2.2.1.6 Celková náplň drahých kovů:
          2.2.1.7 Poměrná koncentrace:
          +++++ TIFF +++++
          2.2.1.8 Nosič (struktura a materiál):
          2.2.1.9 Hustota komůrek:
          2.2.1.10 Druh pouzdra katalyzátoru (katalyzátorů):
          2.2.1.11 Umístění katalyzátoru (katalyzátorů) (místo a vztažná vzdálenost ve výfukovém potrubí):
          2.2.2 Kyslíková sonda: ano / ne [5]
          2.2.2.1 Značka:
          2.2.2.2 Typ:
          2.2.2.3 Umístění:
          2.2.3 Přípusť vzduchu: ano / ne [5]
          2.2.3.1 Druh (pulzující vzduch, vzduchové čerpadlo atd.):
          2.2.4 Recirkulace výfukových plynů: ano / ne [5]
          2.2.4.1 Vlastnosti (průtok atd.):
          2.2.5 Filtr částic: ano / ne [5]
          2.2.5.1 Rozměry, tvar a objem filtru částic:
          2.2.5.2 Druh a konstrukce filtru částic:
          2.2.5.3 Umístění (vztažná vzdálenost ve výfukovém potrubí):
          2.2.5.4 Postup nebo systém regenerace, popis nebo výkres:
          2.2.6 Ostatní systémy: ano / ne [5]
          2.2.6.1 Popis a funkce:
          3. Dodávka paliva
          3.1 Vznětové motory
          3.1.1 Podávací palivové čerpadlo
          Tlak [6] kPa nebo charakteristický diagram [5]:
          3.1.2 Vstřikovací systém
          3.1.2.1 Čerpadlo
          3.1.2.1.1 Značka (značky):
          3.1.2.1.2 Typ (typy):
          3.1.2.1.3 Dodávka paliva: mm3 [6] na zdvih při otáčkách motoru ot/min při plném vstřiku nebo alternativně charakteristický diagram [5] [6]:
          Uvést použitý postup: na motoru/na zkušebním stavu čerpadel [5]
          Jestliže se použije regulace přeplňovacího tlaku, uvede se charakteristická dodávka paliva a přeplňovací tlak v závislosti na otáčkách motoru.
          3.1.2.1.4 Předvstřik
          3.1.2.1.4.1 Křivka předvstřiku [6]:
          3.1.2.1.4.2 Statické časování vstřiku [6]:
          3.1.2.2 Vstřikovací potrubí
          3.1.2.2.1 Délka: mm
          3.1.2.2.2 Vnitřní průměr: mm
          3.1.2.3 Vstřikovač (vstřikovače)
          3.1.2.3.1 Značka (značky):
          3.1.2.3.2 Typ (typy):
          3.1.2.3.3 "Otevírací tlak": kPA [6] nebo charakteristický diagram [5] [6]:
          +++++ TIFF +++++
          3.1.2.4 Regulátor otáček / výkonu
          3.1.2.4.1 Značka (značky):
          3.1.2.4.2 Typ (typy):
          3.1.2.4.3 Otáčky, při kterých začíná omezení při plném zatížení: ot/min
          3.1.2.4.4 Nejvyšší otáčky bez zatížení: ot/min
          3.1.2.4.5 Volnoběžné otáčky: min-1
          3.1.3 Systém pro studený start
          3.1.3.1 Značka (značky):
          3.1.3.2 Typ (typy):
          3.1.3.3 Popis:
          3.1.3.4 Pomocný startovací prostředek:
          3.1.3.4.1 Značka:
          3.1.3.4.2 Typ:
          3.2 Plynové motory [7]
          3.2.1 Palivo: zemní plyn / LPG [8]
          3.2.2 Regulátor (regulátory) tlaku nebo odpařovač / regulátor (regulátory) tlaku [9]
          3.2.2.1 Značka (značky):
          3.2.2.2 Typ (typy):
          3.2.2.3 Počet stupňů redukce tlaku:
          3.2.2.4 Tlak v koncovém stupni: minimální: kPa, maximální: kPa
          3.2.2.5 Počet hlavních seřizovacích bodů:
          3.2.2.6 Počet seřizovacích bodů volnoběhu:
          3.2.2.7 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.3 Palivový systém: směšovací zařízení / přípusť plynu / vstřik kapaliny / přímý vstřik [8]
          3.2.3.1 Regulace poměru ve směsi:
          3.2.3.2 Popis systému nebo schéma a výkresy:
          3.2.3.3 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.4 Směšovací zařízení
          3.2.4.1 Počet:
          3.2.4.2 Značka (značky):
          3.2.4.3 Typ (typy):
          3.2.4.4 Umístění:
          3.2.4.5 Možnosti seřizování:
          3.2.4.6 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.5 Vstřik do sacího potrubí
          3.2.5.1 Vstřik: jednobodový / vícebodový [8]
          3.2.5.2 Vstřik: trvalý / simultánně časovaný / sekvenčně časovaný [8]
          3.2.5.3 Vstřikovací zařízení
          +++++ TIFF +++++
          3.2.5.3.1 Značka (značky):
          3.2.5.3.2 Typ (typy):
          3.2.5.3.3 Možnosti seřizování:
          3.2.5.3.4 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.5.4 Podávací čerpadlo (pokud připadá v úvahu)
          3.2.5.4.1 Značka (značky):
          3.2.5.4.2 Typ (typy):
          3.2.5.4.3 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.5.5 Vstřikovač (vstřikovače)
          3.2.5.5.1 Značka (značky):
          3.2.5.5.2 Typ (typy):
          3.2.5.5.3 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.6 Přímý vstřik
          3.2.6.1 Vstřikovací čerpadlo / regulátor tlaku [10]
          3.2.6.1.1 Značka (značky):
          3.2.6.1.2 Typ (typy):
          3.2.6.1.3 Časování vstřiku:
          3.2.6.1.4 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.6.2 Vstřikovač (vstřikovače)
          3.2.6.2.1 Značka (značky):
          3.2.6.2.2 Typ (typy):
          3.2.6.2.3 Otevírací tlak nebo charakteristický diagram [11]:
          3.2.6.2.4 Číslo osvědčení podle směrnice 1999/96/ES:
          3.2.7 Elektronické řídicí zařízení (ECU)
          3.2.7.1 Značka (značky):
          3.2.7.2 Typ (typy):
          3.2.7.3 Možnosti seřizování:
          3.2.8 Zařízení specifické pro zemní plyn
          3.2.8.1 Varianta 1
          (jen u schvalování typu motorů pro několik specifických složení paliva)
          3.2.8.1.1 Složení paliva:
          methan (CH4): | základní: % mol | min. % mol | max. % mol |
          ethan (C2H6): | základní: % mol | min. % mol | max. % mol |
          propan (C3H8): | základní: % mol | min. % mol | max. % mol |
          butan (C4H10): | základní: % mol | min. % mol | max. % mol |
          C5/C5+: | základní: % mol | min. % mol | max. % mol |
          kyslík (O2): | základní: % mol | min. % mol | max. % mol |
          inertní plyny (N2, He atd.): | základní: % mol | min. % mol | max. % mol |
          +++++ TIFF +++++
          3.2.8.1.2 Vstřikovač (vstřikovače)
          3.2.8.1.2.1 Značka (značky):
          3.2.8.1.2.2 Typ (typy):
          3.2.8.1.3 Popřípadě jiné
          3.2.8.2 Varianta 2
          (jen u schvalování typu pro několik specifických složení paliva)
          4. Časování ventilů
          4.1 Maximální zdvih ventilů a úhly otevření a zavření vzhledem k úvratím nebo rovnocenné údaje:
          4.2 Referenční hodnoty nebo rozsahy seřízení [12]:
          5. Systém zapalování (jen zážehové motory)
          5.1 Druh systému zapalování: společná cívka a svíčky / individuální cívka a svíčky / cívka na svíčce / jiné (blíže určete) [12]
          5.2 Řídicí zařízení zapalování
          5.2.1 Značka (značky):
          5.2.2 Typ (typy):
          5.3 Křivka předstihu zapalování / charakteristické pole předstihu zapalování [12] [13]:
          5.4 Časování zážehu [12] stupňů před horní úvratí při otáčkách ot/min a při absolutním tlaku v sacím potrubí kPa
          5.5 Zapalovací svíčky
          5.5.1 Značka (značky):
          5.5.2 Typ (typy):
          5.5.3 Nastavení mezery: mm
          5.6 Zapalovací cívka (cívky)
          5.6.1 Značka (značky):
          5.6.2 Typ (typy):
          +++++ TIFF +++++
          [1] Předložte pro každý motor rodiny.
          [2] Nehodící se škrtněte.
          [3] Uveďte dovolenou odchylku.
          [4] Nehodící se škrtněte.
          [5] Nehodící se škrtněte.
          [6] Uveďte dovolenou odchylku.
          [7] U jinak uspořádaných systémů uveďte rovnocenné údaje (pro bod 3.2).
          [8] Nehodící se škrtněte.
          [9] Uveďte dovolenou odchylku.
          [10] Nehodící se škrtněte.
          [11] Uveďte dovolenou odchylku.
          [12] Nehodící se škrtněte.
          [13] Uveďte dovolenou odchylku.
          --------------------------------------------------
          Dodatek 4
          VLASTNOSTI ČÁSTÍ VOZIDLA MAJÍCÍCH VZTAH K MOTORU
          1. Podtlak v systému sání při jmenovitých otáčkách motoru a při plném zatížení: kPa
          2. Protitlak ve výfukovém systému při jmenovitých otáčkách motoru a při plném zatížení: kPa
          3. Objem výfukového systému: cm3
          4. Příkon pomocných zařízení potřebných k funkci motoru, vymezený pro určité provozní podmínky ve směrnici 80/1269/EHS, příloha I bod 5.1.1.
          Zařízení | Příkon (kW) při různých otáčkách motoru |
          Volnoběh | Dolní otáčky | Horní otáčky | Otáčky A [1] | Otáčky B [1] | Otáčky C [1] | Referenční otáčky [2] |
          P(a) | | | | | | | |
          Pomocná zařízení potřebná k provozu motoru (odečte se od změřeného výkonu motoru) | | | | | | | |
          viz dodatek 1 bod 6.1. | | | | | | | |
          +++++ TIFF +++++
          [1] Zkouška ESC.
          [2] Pouze zkouška ETC.
          --------------------------------------------------
          PŘÍLOHA III
          POSTUP ZKOUŠKY
          1. ÚVOD
          1.1 Tato příloha popisuje způsoby stanovení emisí plynných znečišťujících látek, znečišťujících částic a kouře z motoru, který se bude zkoušet. Jsou popsány tři zkušební cykly, které se použijí podle bodu 6.2 přílohy I:
          - ESC, který se skládá z 13 režimů ustáleného stavu,
          - ELR, který se skládá ze sledu stupňů neustáleného zatížení při různých otáčkách a tyto stupně jsou integrální částí postupu zkoušky a provádějí se postupně za sebou,
          - ETC, který se skládá z neustálených, každou sekundu se střídajících režimů.
          1.2 Ke zkoušce se motor namontuje na zkušební stav a připojí se k dynamometru.
          1.3 Princip měření
          Emise znečišťujících látek z výfuku motoru, které se měří, obsahují plynné složky (oxid uhelnatý, celkové uhlovodíky u vznětových motorů jen při zkoušce ESC; uhlovodíky jiné než methan u vznětových a plynových motorů jen při zkoušce ETC; methan u plynových motorů jen při zkoušce ETC a oxidy dusíku), částice (jen u vznětových motorů) a kouř (u vznětových motorů jen při zkoušce ELR). Kromě toho se oxid uhelnatý často používá jako indikační plyn ke stanovení poměru ředění u systémů s ředěním části toku a systémů s ředěním plného toku. Osvědčená technická praxe doporučuje, aby se obecně měřil oxid uhličitý jako výborný prostředek k rozpoznání problémů měření v průběhu zkoušky.
          1.3.1 Zkouška ESC
          V průběhu předepsaného sledu provozních stavů zahřátého motoru se kontinuálně analyzují emise z výfuku na vzorku surových výfukových plynů. Zkušební cyklus se skládá z většího počtu režimů otáček a výkonu, které odpovídají typickému provoznímu rozsahu vznětových motorů. V průběhu každého režimu se měří koncentrace všech plynných znečišťujících látek, průtok výfukových plynů a výkon a změřené hodnoty se zváží. Vzorek částic se zředí stabilizovaným okolním vzduchem. V průběhu celého postupu zkoušky se odebere jeden vzorek a zachytí se na vhodných filtrech. Pro každou znečišťující látku se vypočtou emitované gramy na kilowatthodinu, jak je popsáno v dodatku 1 k této příloze. Kromě toho se změří NOx ve třech zkušebních bodech v oblasti kontroly, které vybere technická zkušebna [1], a změřené hodnoty se porovnají s hodnotami vypočtenými z režimů zkušebního cyklu, které zahrnují vybrané zkušební body. Kontrolou NOx se zajišťuje účinnost zařízení motoru k omezení emisí v typickém provozním rozsahu motoru.
          1.3.2 Zkouška ELR
          V průběhu předepsané zatěžovací zkoušky se určuje kouř zahřátého motoru opacimetrem. Zkouška se skládá ze zatěžování motoru při konstantních otáčkách z 10 % na 100 % zatížení, a to při třech různých otáčkách motoru. Kromě toho se provede čtvrtý zatěžovací stupeň vybraný technickou zkušebnou [1] a hodnota se porovná s hodnotami předcházejících zatěžovacích stupňů. Nejvyšší hodnota kouře se určí průměrovacím algoritmem, jak je popsáno v dodatku 1 k této příloze.
          1.3.3 Zkouška ETC
          S motorem zahřátým na provozní teplotu se v průběhu předepsaného neustáleného cyklu, který vystihuje s velmi dobrou přibližností silniční jízdní režimy specifické pro motory velkého výkonu instalované v nákladních automobilech a autobusech, analyzují výše uvedené znečišťující látky po zředění celkového množství výfukových plynů stabilizovaným okolním vzduchem. S použitím signálů zpětné vazby pro točivý moment a otáčky motoru přicházejících z dynamometru se integruje výkon v čase trvání cyklu a výsledkem je práce vykonaná motorem za cyklus. Koncentrace NOx a HC za cyklus se určí integrací signálu analyzátoru. Koncentrace CO, CO2 a NMHC se může určit integrací signálu analyzátoru nebo odběrem vzorku do vaku. Pokud jde o částice, zachytí se proporcionální vzorek na vhodných filtrech. K výpočtu hodnot hmotnosti emisí znečišťujících látek se určí průtok zředěných výfukových plynů za cyklus. Z hodnot hmotnosti emisí ve vztahu k práci motoru se určí gramy každé znečišťující látky emitované na kilowatthodinu, jak je popsáno v dodatku 2 k této příloze.
          2. PODMÍNKY ZKOUŠEK
          2.1 Podmínky zkoušky motoru
          2.1.1 Změří se absolutní teplota Ta v sání vzduchu pro motor vyjádřená v kelvinech a suchý atmosférický tlak ps vyjádřený v kPa a podle následujících ustanovení se určí parametr F:
          a) pro vznětové motory:
          Motory s atmosférickým sáním a motory mechanicky přeplňované:
          F = 99ps × Ta2980,7
          Motory přeplňované turbokompresorem s chlazením nasávaného vzduchu nebo bez tohoto chlazení:
          F = 99ps0,7 × Ta2981,5
          b) pro plynové motory:
          F = 99ps1,2 × Ta2980,6
          2.1.2 Platnost zkoušky
          Pro uznání zkoušky za platnou musí být parametr F takový, aby:
          0,96 ≤ F ≤ 1,06
          2.2 Motory s chlazením přeplňovacího vzduchu
          Musí se zaznamenávat teplota přeplňovacího vzduchu, která se smí lišit při otáčkách deklarovaného maximálního výkonu a při plném zatížení o ±5 K od maximální teploty přeplňovacího vzduchu uvedené v bodě 1.16.3 dodatku 1 k příloze II. Teplota chladicího média musí být nejméně 293 K (20 °C).
          Jestliže se použije systém ve zkušebně nebo vnější dmychadlo, smí se lišit teplota přeplňovacího vzduchu o ±5 K od maximální teploty přeplňovacího vzduchu uvedené v bodě 1.16.3 dodatku 1 k příloze II při otáčkách deklarovaného maximálního výkonu a při plném zatížení. Nastavení chladiče přeplňovacího vzduchu, kterým se splňují výše uvedené podmínky, se musí použít pro celý zkušební cyklus.
          2.3 Systém sání motoru
          Musí se použít systém sání motoru, který má vstupní odpor vzduchu lišící se nejvýše o ± 100 Pa od horní hranice u motoru pracujícího při otáčkách maximálního deklarovaného výkonu a s plným zatížením.
          2.4 Výfukový systém motoru
          Musí se použít výfukový systém, který má protitlak ve výfuku lišící se nejvýše o ± 1000 Pa od horní hranice u motoru pracujícího při otáčkách maximálního deklarovaného výkonu a s plným zatížením a který má objem nelišící se o více než ± 40 % od objemu uvedeného výrobcem. Může se použít systém zkušebny, pokud reprodukuje skutečné provozní podmínky motoru. Výfukový systém musí splňovat požadavky pro odběr vzorků výfukového plynu stanovené v bodě 3.4 dodatku 4 k příloze III a v bodech 2.2.1 a 2.3.1 EP přílohy V, týkajících se výfukové trubky (EP).
          Jestliže je motor vybaven zařízením k následnému zpracování výfukových plynů, musí mít výfuková trubka stejný průměr, jako se používá v praxi, v místě vzdáleném proti směru proudění o nejméně 4 průměry trubky od vstupu v začátku expanzní části, která obsahuje zařízení k následnému zpracování výfukových plynů. Vzdálenost mezi přírubou sběrného výfukového potrubí nebo výstupem z turbokompresoru a zařízením k následnému zpracování výfukových plynů musí být stejná jako v uspořádání na vozidle nebo musí mít hodnotu uvedenou výrobcem. Protitlak ve výfuku, popřípadě odpor, musí splňovat stejná kritéria, jak je uvedeno výše, a mohou být seřízeny ventilem. Nádrž obsahující zařízení k následnému zpracování výfukových plynů se může vyjmout při orientační zkoušce a při mapování vlastností motoru a může se nahradit rovnocennou nádrží s neaktivním nosičem katalyzátoru.
          2.5 Systém chlazení
          Musí se použít systém chlazení motoru s dostatečnou kapacitou k udržení běžných pracovních teplot motoru předepsaných výrobcem.
          2.6 Mazací olej
          Vlastnosti mazacího oleje použitého při zkoušce musí být zapsány a předloženy zároveň s výsledky zkoušky podle bodu 7.1 dodatku 1 k příloze II.
          2.7 Palivo
          Musí se použít referenční palivo popsané v příloze IV.
          Teplotu paliva a měřicí bod vymezí výrobce v rámci mezních hodnot stanovených v bodě 1.16.5 dodatku 1 k příloze II. Teplota paliva nesmí být nižší než 306 K (33 °C). Jestliže není určena, musí mít na vstupu systému dodávky paliva hodnotu 311 K ± 5 K (38 °C ± 5 °C).
          U motorů pracujících s NG a LPG musí být teplota paliva a měřicí bod v rozmezí mezních hodnot stanovených v bodě 1.16.5 dodatku 1 k příloze II nebo u motorů, které nejsou základními motory, v bodě 1.16.5 dodatku 3 k příloze II.
          2.8 Zkouška zařízení k následnému zpracování výfukových plynů
          Jestliže je motor vybaven zařízením k následnému zpracování výfukových plynů, musí být emise změřené za zkušební cyklus (cykly) reprezentativní pro emise ve skutečném provozu. Jestliže toho nelze dosáhnout v jednom zkušebním cyklu (např. u filtrů částic s periodickou regenerací), provede se více zkušebních cyklů a z výsledků zkoušek se určí průměr nebo se výsledky zváží. Přesný postup vycházející ze správného technického zhodnocení se dohodne mezi výrobcem motoru a technickou zkušebnou na základě osvědčeného technického úsudku.
          [1] Zkušební body musí být vybrány za použití schválených statistických metod náhodného výběru.
          --------------------------------------------------
          Dodatek 1
          ZKUŠEBNÍ CYKLY ESC A ELR
          1. SEŘÍZENÍ MOTORU A DYNAMOMETRU
          1.1 Určení otáček motoru A, B a C
          Otáčky motoru A, B a C udá výrobce podle těchto ustanovení:
          Horní otáčky nhi se určí výpočtem 70 % deklarovaného maximálního netto výkonu P(n), jak je stanoveno v bodě 8.2 dodatku 1 k příloze II. Nejvyšší otáčky, při kterých má motor tuto hodnotu výkonu na křivce výkonu, jsou otáčky nhi.
          Dolní otáčky nlo se určí výpočtem 50 % deklarovaného maximálního netto výkonu P(n), jak je stanoveno v bodě 8.2 dodatku 1 k příloze II. Nejnižší otáčky, při kterých má motor tuto hodnotu výkonu na křivce výkonu, jsou otáčky nlo.
          Otáčky motoru A, B a C se vypočtou takto:
          Otáčky A = nlo + 25 % nhi - nlo
          Otáčky B = nlo + 50 % nhi - nlo
          Otáčky C = nlo + 75 % nhi - nlo.
          Otáčky motoru A, B a C lze ověřit jednou z následujících metod:
          a) V průběhu schvalování výkonu motoru podle směrnice 80/1269/EHS se měří v doplňkových zkušebních bodech, aby se zajistilo přesné určení nhi a nlo. Maximální výkon nhia nlose určí z křivky výkonu a otáčky motoru A, B a C se vypočtou podle výše uvedených ustanovení.
          b) Zmapují se vlastnosti motoru podél křivky plného zatížení z nejvyšších otáček bez zatížení do volnoběžných otáček, přičemž se použije nejméně 5 měřicích bodů na interval 1000 min-1 a měřicích bodů v rozmezí ±50 min-1 otáček deklarovaného maximálního výkonu. Maximální výkon nhia nlose určí z této mapovací křivky vlastností a otáčky motoru A, B a C se vypočtou podle výše uvedených ustanovení.
          Jestliže změřené otáčky motoru A, B a C jsou v rozmezí ± 3 % otáček motoru deklarovaných výrobcem, použijí se pro zkoušku emisí deklarované otáčky motoru. Jestliže kterékoliv otáčky motoru překračují tuto mezní odchylku použijí se pro zkoušku emisí změřené otáčky motoru.
          1.2 Určení seřízení dynamometru
          Křivka točivého momentu při plném zatížení se určí experimentálně, aby se mohly vypočítat hodnoty točivého momentu pro vymezené zkušební režimy za netto podmínek, které jsou uvedeny v bodě 8.2 dodatku 1 k příloze II. Popřípadě se může vzít v úvahu příkon zařízení poháněných motorem. Seřízení dynamometru pro každý zkušební režim se vypočte podle vzorce:
          s = Pn × L/100, jestliže se zkouší za netto podmínek,
          s = Pn × L/100 + Pa - Pb, jestliže se nezkouší za netto podmínek,
          kde:
          s = seřízení dynamometru, kW
          P(n) = netto výkon motoru podle bodu 8.2 dodatku 1 k příloze II, kW
          L = procento zatížení podle bodu 2.7.1, %
          P(a) = příkon pomocných zařízení, která jsou namontována podle bodu 6.1 dodatku 1 k příloze II
          P(b) = příkon pomocných zařízení, která jsou odmontována podle bodu 6.2 dodatku 1 k příloze II
          2. PROVEDENÍ ZKOUŠKY ESC
          Na žádost výrobce se může provést před měřicím cyklem orientační zkouška ke stabilizování motoru a výfukového systému.
          2.1 Příprava odběrných filtrů
          Nejméně jednu hodinu před zkouškou se vloží každý filtr (dvojice filtrů) do uzavřené, ale neutěsněné Petriho misky a umístí se do vážicí komory ke stabilizaci. Na konci periody stabilizace se každý filtr (dvojice filtrů) zváží a zaznamená se vlastní hmotnost filtrů. Filtr (dvojice filtrů) se pak uloží do Petriho misky, která se uzavře, nebo do utěsněného držáku filtru až do doby, kdy bude potřebný ke zkoušce. Jestliže se filtr (dvojice filtrů) nepoužije během osmi hodin od jeho vyjmutí z vážicí komory, musí se stabilizovat a znovu zvážit před použitím.
          2.2 Instalace měřicího zařízení
          Přístroje a odběrné sondy se instalují, jak je požadováno. Použije-li se k ředění výfukových plynů systém s ředěním plného toku, připojí se výfuková trubka k systému.
          2.3 Startování ředicího systému a motoru
          Ředicí systém a motor se nastartují a zahřívají se, až se všechny teploty a tlaky ustálí při maximálním výkonu podle doporučení výrobce a osvědčené technické praxe.
          2.4 Startování odběrného systému pro odběr částic
          Systém pro odběr částic se nastartuje a nechá se běžet s obtokem. Hladina částic pozadí ředicího vzduchu se může určit vedením ředicího vzduchu filtry částic. Jestliže se používá filtrovaný ředicí vzduch, může se provést jedno měření před zkouškou a jedno měření po ní. Jestliže ředicí vzduch není filtrován, mohou se provést měření na začátku a na konci cyklu a vypočítat průměrná hodnota.
          2.5 Nastavení ředicího poměru
          Ředicí vzduch se musí nastavit tak, aby teplota zředěných výfukových plynů měřená bezprostředně před primárním filtrem nepřekročila 325 K (52 °C) při kterémkoli režimu. Ředicí poměr (q) nesmí být menší než 4.
          U systémů, které používají CO2 nebo NOx k regulaci ředicího poměru, se musí měřit obsah CO2 nebo NOx v ředicím vzduchu na začátku a na konci každé zkoušky. Výsledky měření koncentrace CO2 a NOx pozadí v ředicím vzduchu před zkouškou a po ní se smějí lišit nejvíce o 100 ppm u prvního plynu a o 5 ppm u druhého plynu.
          2.6 Kontrola analyzátorů
          Analyzátory emisí se nastaví na nulu a jejich měřicí rozsah se kalibruje.
          2.7 Zkušební cyklus
          2.7.1 Se zkoušeným motorem se provede následující třináctirežimový cyklus na dynamometru:
          Číslo režimu | Otáčky motoru | Procento zatížení | Váhový faktor | Trvání režimu |
          1 | volnoběžné | — | 0,15 | 4 minuty |
          2 | A | 100 | 0,08 | 2 minuty |
          3 | B | 50 | 0,10 | 2 minuty |
          4 | B | 75 | 0,10 | 2 minuty |
          5 | A | 50 | 0,05 | 2 minuty |
          6 | A | 75 | 0,05 | 2 minuty |
          7 | A | 25 | 0,05 | 2 minuty |
          8 | B | 100 | 0,09 | 2 minuty |
          9 | B | 25 | 0,10 | 2 minuty |
          10 | C | 100 | 0,08 | 2 minuty |
          11 | C | 25 | 0,05 | 2 minuty |
          12 | C | 75 | 0,05 | 2 minuty |
          13 | C | 50 | 0,05 | 2 minuty |
          2.7.2 Postup zkoušky
          Začne postup zkoušky. Zkouška musí být provedena v pořadí čísel režimů, jak je stanoveno v bodě 2.7.1.
          Motor musí pracovat v každém režimu po předepsanou dobu, přičemž se mění otáčky a zatížení v prvních 20 sekundách. Uvedené otáčky se musí udržovat v rozmezí ± 50 min-1 a uvedený točivý moment se musí udržovat v rozmezí ± 2 % maximálního točivého momentu při zkušebních otáčkách.
          Na žádost výrobce se může postup zkoušky opakovat v počtu dostatečném k zachycení většího množství částic na filtru. Výrobce musí předložit podrobný popis postupů vyhodnocování měřených hodnot a výpočtů. Plynné emise se určují jen při prvním cyklu.
          2.7.3 Odezva analyzátoru
          Výstup analyzátorů se zapisuje zapisovačem nebo se zaznamenává odpovídajícím systémem záznamu dat v průběhu zkušebního cyklu, kdy výfukový plyn prochází analyzátory.
          2.7.4 Odběr vzorku částic
          Během celého postupu zkoušky se použije jednu dvojici filtrů (primární a koncový filtr, viz dodatek 4 k příloze III). Váhové faktory pro jednotlivé režimy vymezené v postupu zkušebního cyklu se musí uvažovat tak, že se v každém jednotlivém režimu cyklu odebere vzorek proporcionální hmotnostnímu průtoku výfukových plynů. Toho lze dosáhnout tím, že se seřídí průtok vzorku, doba odběru nebo ředicí poměr tak, aby bylo splněno kritérium efektivních váhových faktorů podle bodu 5.6.
          Doba odběru na jeden režim musí být nejméně 4 sekundy na váhový faktor 0,01. Odběr se musí provést v každém režimu co nejpozději. Odběr vzorku částic musí skončit nejdříve 5 sekund před koncem každého režimu.
          2.7.5 Podmínky motoru
          Během každého režimu se zaznamenávají otáčky a zatížení motoru, teplota a podtlak nasávaného vzduchu, teplota a protitlak ve výfuku, průtok paliva a průtok nasávaného vzduchu nebo výfukového plynu, teplota přeplňovacího vzduchu, teplota paliva a vlhkost, přičemž po dobu odběru částic, avšak v každém případě během poslední minuty každého režimu, musí být splněny požadavky na otáčky a zatížení (viz bod 2.7.2).
          Musí se zaznamenávat všechna doplňková data potřebná k výpočtu (viz body 4 a 5).
          2.7.6 Ověření emisí NOx v kontrolní oblasti
          Ověření emisí NOx v kontrolní oblasti musí proběhnout bezprostředně po ukončení režimu 13.
          Před začátkem měření se motor stabilizuje v režimu 13 po dobu 3 minut. Měření se provedou v různých zkušebních bodech v oblasti kontroly, které vybere technická zkušebna [1]. Každé měření trvá dvě minuty.
          Postup měření je totožný s měřením NOx při třináctirežimovém cyklu a provede se podle bodů 2.7.3, 2.7.5 a 4.1 tohoto dodatku a podle bodu 3 dodatku 4 k příloze III.
          Výpočet se provede podle bodu 4.
          2.7.7 Opakované ověření analyzátorů
          Po zkoušce emisí se k opakovanému ověření analyzátorů použije nulovací plyn a shodný kalibrační plyn. Ověření se považuje za vyhovující, jestliže je rozdíl mezi výsledkem před zkouškou a po zkoušce menší než 2 % hodnoty kalibračního plynu rozpětí.
          3. PROVEDENÍ ZKOUŠKY ELR
          3.1 Instalace měřicího zařízení
          Opacimetr a popřípadě odběrné sondy se musí instalovat za tlumičem výfuku nebo za každým zařízením k následnému zpracování výfukových plynů, pokud je namontováno, podle obecných postupů instalace uvedených výrobcem přístroje. Kromě toho se musí splnit požadavky oddílu 10 normy ISO DIS 11614 v případech, na které se tyto požadavky vztahují.
          Před provedením každé kontroly nuly a koncového údaje stupnice se opacimetr zahřeje a stabilizuje podle doporučení výrobce přístroje. Jestliže je opacimetr vybaven systémem k proplachování vzduchem, aby se zabránilo znečišťování optiky přístroje, musí se tento systém také aktivovat a seřídit podle doporučení výrobce.
          3.2 Ověření opacimetru
          Ověření nuly a koncového údaje stupnice se provede v režimu čtení údajů opacimetru, protože stupnice opacity má dva přesně definované body kalibrace, a to opacitu 0 % a opacitu 100 %. Koeficient absorpce světla se správně vypočte na základě změřené opacity a hodnoty LA udané výrobcem opacimetru, když se přístroj znovu seřídí na režim čtení údajů pro zkoušku.
          Bez blokování světelného paprsku opacimetru se nastaví údaj opacity na 0,0 % ± 1,0 %. Při blokování dráhy světla ke snímači se nastaví údaj opacity na 100,0 % ±1,0 %.
          3.3 Zkušební cyklus
          3.3.1 Stabilizování motoru
          Motor a systém se zahřejí odběrem maximálního výkonu tak, aby se stabilizovaly parametry motoru podle doporučení výrobce. Fáze stabilizování také ochrání vlastní měření před vlivem úsad ve výfukovém systému pocházejících z předchozí zkoušky.
          Když je motor stabilizován, zahájí se cyklus v rozmezí 20 ± 2 s po fázi stabilizování. Na žádost výrobce je možné provést orientační zkoušku pro doplňkové stabilizování před měřicím cyklem.
          3.3.2 Postup zkoušky
          Zkouška se skládá ze tří stupňů zatížení při každé ze tří hodnot otáček motoru A (cyklus 1), B (cyklus 2) a C (cyklus 3) určených podle bodu 1.1 přílohy III, po nichž následuje cyklus 4 při otáčkách, které jsou v kontrolní oblasti, a se zatížením mezi 10 % a 100 % vybraným technickou zkušebnou [2]. Při běhu zkoušeného motoru na dynamometru se musí dodržet následující postup zkoušky znázorněný na obrázku 3.
          Obrázek 3
          Postup zkoušky ELR
          +++++ TIFF +++++
          a) Motor musí běžet s otáčkami A a se zatížením 10 % po dobu (20 ± 2) s. Uvedené otáčky se musí dodržovat v rozmezí ± 20 min-1 a uvedený točivý moment v rozmezí ± 2 % maximálního točivého momentu při otáčkách zkoušky.
          b) Na konci předcházejícího úseku se ovládací páka otáček uvede rychle do zcela otevřené polohy, ve které se udržuje po dobu (10 ± 1) s. Dynamometr musí působit zatížením potřebným k tomu, aby otáčky motoru kolísaly nejvýše o ± 150 min-1 během prvních 3 s a nejvýše o ± 20 min-1 v průběhu zbývající části úseku.
          c) Postup popsaný v a) a b) se opakuje dvakrát.
          d) Po ukončení třetího stupně zatížení se v průběhu (20 ± 2) s motor seřídí na otáčky B a na zatížení 10 %.
          e) Postup a) až c) se provede s motorem běžícím s otáčkami B.
          f) Po ukončení třetího stupně zatížení se v průběhu (20 ± 2) s motor seřídí na otáčky C a na zatížení 10 %.
          g) Postup a) až c) se provede s motorem běžícím s otáčkami C.
          h) Po ukončení třetího stupně zatížení se v průběhu (20 ± 2) s motor seřídí na zvolené otáčky a na jakékoli zatížení překračující 10 %.
          i) Postup a) až c) se provede s motorem běžícím se zvolenými otáčkami.
          3.4 Kontrola správnosti cyklu
          Relativní směrodatné odchylky středních hodnot kouře při každé stanovené hodnotě otáček zkoušky (SVA, SVB, SVC vypočtených podle bodu 6.3.3 tohoto dodatku ze tří za sebou následujících stupňů zatížení při každé hodnotě otáček zkoušky) musí být nižší než 15 % střední hodnoty nebo nižší než 10 % mezní hodnoty uvedené v tabulce 1 přílohy I, podle toho, která je větší. Jestliže rozdíl je větší, musí se postup opakovat tak dlouho, až hodnoty tří za sebou následujících stupňů zatížení splní kritéria kontroly správnosti.
          3.5 Opakované ověření opacimetru
          Hodnota posunu nuly opacimetru po zkoušce nesmí překročit ± 5 % mezní hodnoty uvedené v tabulce 1 přílohy I.
          4. VÝPOČET PLYNNÝCH EMISÍ
          4.1 Vyhodnocení změřených hodnot
          K vyhodnocení plynných emisí se pro každý režim určí střední hodnota ze záznamu údajů posledních 30 sekund režimu a střední koncentrace HC, CO a NOx v průběhu každého režimu se určí ze středních hodnot záznamů údajů a odpovídajících kalibračních údajů. Může se použít jiný způsob záznamu, jestliže zajistí rovnocenný sběr dat.
          Při ověřování NOx v kontrolní oblasti platí výše uvedené požadavky jen pro NOx.
          Průtok výfukového plynu GEXHW, nebo pokud se volí průtok zředěného výfukového plynu GTOTW, se určí podle bodu 2.3 dodatku 4 k příloze III.
          4.2 Korekce suchého / vlhkého stavu
          Jestliže se již neměří na vlhkém základě, převede se změřená koncentrace na vlhký základ podle těchto vzorců.
          conc vlhká = Kw × conc suchá
          Pro surový výfukový plyn:
          KW,r = 1 - FH × GFUELGAIRD - KW,2
          a
          FFH = 1,9691 + GFUELGAIRW
          Pro ředěný výfukový plyn:
          KW,e,1 = 1 -HTCRAT × CO2% vlhký200 - KW1
          nebo
          KW,e,2 = 1 - KW11 + HTCRAT × CO2 %suchý200
          Pro ředicí vzduch: | Pro nasávaný vzduch (jestliže je jiný než ředicí vzduch) |
          KW,d = 1 - KW1 | KW,a = 1 - KW2 |
          KW1 = 1,608 × Hd1000 + 1,608 × Hd | KW2 = 1,608 × Ha1000 + 1,608 × Ha |
          Hd = 6,220 × Rd × pdpB - pd × Rd × 10-2 | Ha = 6,220 × Ra × papB - pa × Ra × 10-2 |
          kde:
          Ha, Hd = g vody v 1 kg suchého vzduchu
          Rd, Ra = relativní vlhkost ředicího / nasávaného vzduchu, %
          pd, pa = tlak nasycených par v ředicím / nasávaném vzduchu, kPa
          pB = celkový barometrický tlak, kPa
          4.3 Korekce na vlhkost a teplotu u NOx
          Protože emise NOx jsou závislé na vlastnostech okolního vzduchu, musí se koncentrace NOx korigovat z hlediska okolní teploty a vlhkosti faktory podle tohoto vzorce:
          KH,D = 11 + A × Ha - 10,71 + B × Ta - 298
          kde:
          A = 0,309 GFUEL/GAIRD - 0,0266
          B = - 0,209 GFUEL/GAIRD + 0,00954
          Ta = teplota vzduchu, K
          Ha = vlhkost nasávaného vzduchu, g vody na 1 kg suchého vzduchu
          Ha = 6,220 × Ra × papB - pa × Ra × 10-2
          kde:
          Ra = relativní vlhkost nasávaného vzduchu, %
          pa = tlak nasycených par v nasávaném vzduchu, kPa
          pB = celkový barometrický tlak, kPa
          4.4 Výpočet hmotnostních průtoků emisí
          Hmotnostní průtoky emisí (g/h) pro každý režim se vypočtou následujícím způsobem, přičemž se předpokládá, že hustota výfukového plynu je 1,293 kg/m3 při 273 K (0 °C) a 101,3 kPa:
          1.NOx mass = 0,001587 × NOx conc × KH,D × GEXHW
          2.COx mass = 0,000966 × COconc × GEXHW
          3.HCmass = 0,000479 × HCconc × GEXHW
          kde NOx conc, COconc, HCconc [3] jsou střední koncentrace (ppm) v surovém výfukovém plynu určené podle bodu 4.1.
          Pokud jsou plynné emise určeny systémem s ředěním plného toku, použijí se tyto vzorce:
          1.NOx mass = 0,001587 × NOx conc × KH,D × GTOTW
          2.COx mass = 0,000966 × COconc × GTOTW
          3.HCmass = 0,000479 × HCconc × GTOTW
          kde NOx conc, COconc, HCconc [3] jsou střední koncentrace (ppm) korigované pozadím ve zředěném výfukovém plynu pro každý režim, určené podle bodu 4.3.1.1 dodatku 2 k příloze III.
          4.5 Výpočet specifických emisí
          Emise (g/kWh) se vypočtou pro všechny jednotlivé složky tímto způsobem:
          NO‾x = Σ NOx, masse × WFiΣ Pni × WFi
          CO‾ = Σ COmass × WFiΣ Pni × WFi
          HC‾ = Σ HCmass × WFiΣ Pni × WFi
          Při výše uvedeném výpočtu se použily váhové faktory (WF) podle bodu 2.7.1.
          4.6 Výpočet hodnot kontrolní oblasti
          Pro tři kontrolní body vybrané podle bodu 2.7.6 se emise NOx změří a vypočtou podle bodu 4.6.1 a také se určí interpolací z režimů zkušebního cyklu, které jsou nejblíže k odpovídajícímu kontrolnímu bodu podle bodu 4.6.2. Měřené hodnoty se pak porovnají s interpolovanými hodnotami podle bodu 4.6.3.
          4.6.1 Výpočet specifických emisí
          Emise NOx pro každý z kontrolních bodů Z se vypočtou takto:
          NOx mass,Z = 0,001587 × NOx conc,Z × KH,D × GEXH W
          NOx,Z = NOx mass,ZPnZ
          4.6.2 Určení hodnoty emisí ze zkušebního cyklu
          Emise NOx pro každý z kontrolních bodů se interpoluje ze čtyř nejbližších režimů zkušebního cyklu, které obklopují vybraný kontrolní bod Z, jak je znázorněno na obrázku 4. Pro tyto režimy platí tyto definice:
          Otáčky R = Otáčky T = nRT
          Otáčky S = Otáčky U = nSU
          Procento zatížení R = Procento zatížení S
          Procento zatížení T = Procento zatížení U
          Emise NOx vybraného kontrolního bodu Z se vypočte takto:
          EZ = ERS + ETU - ERS × MZ - MRSMTU - MRS
          a:
          ETU = ET + EU - ET × nZ - nRTnSU - nRT
          ERS = ER + ES - ER × nz - nRTnSU - nRT
          MTU = MT + MU - MT × nz - nRTnSU - nRT
          MRS = MR + MS - MR × nZ - nRTnSU - nRT
          kde:
          ER, ES, ET, EU = specifická emise NOx obklopujících režimů vypočtených podle bodu 4.6.1,
          MR, MS, MT, MU = točivý moment motoru obklopujících režimů.
          Obrázek 4
          Interpolace kontrolního bodu NOx
          +++++ TIFF +++++
          4.6.3 Porovnání hodnot emisí NOx
          Změřené specifické emise NOx kontrolního bodu Z (NOx,Z) se porovnají s interpolovanou hodnotou EZ takto:
          NOx diff = 100 × NOx,z - EzEz
          5. VÝPOČET EMISÍ ČÁSTIC
          5.1 Vyhodnocení změřených hodnot
          K vyhodnocení částic se zaznamená celková hmotnost (MSAM,i) vzorku zachyceného filtry pro každý režim.
          Filtry se vloží zpět do vážicí komory a stabilizují se po dobu nejméně jedné hodiny, avšak nejvýše po dobu 80 hodin, a pak se zváží. Zaznamená se brutto hmotnost filtrů a odečte se tara hmotnost (viz bod 1 tohoto dodatku). Hmotnost částic Mf je součtem hmotností částic na primárních a koncových filtrech.
          Jestliže se musí použít korekce pozadím, musí se zaznamenat hmotnost ředicího vzduchu (MDIL), který prošel filtry, a hmotnost částic (Md). Jestliže se vykonalo více než jedno měření, musí se pro každé jednotlivé měření vypočítat poměr Md/MDIL a určit střední hodnota.
          5.2 Systém s ředěním části toku
          Konečné výsledky zkoušky emisí částic, které se uvedou ve zkušebním protokolu, se určí následujícími kroky. Protože druhy řízení ředicího poměru mohou být různé, použijí se k určení GEDFW různé metody výpočtu. Všechny výpočty musí vycházet ze středních hodnot jednotlivých režimů v průběhu periody odběru vzorku.
          5.2.1 Izokinetické systémy
          GEDF W,i = GEXH W,i × qi
          qi = GDIL W,i + GEXH W,i × rGEXH W,i × r
          kde r odpovídá poměru ploch příčných řezů izokinetickou sondou a výfukovou trubkou:
          R = ApAT
          5.2.2 Systémy s měřením koncentrace CO2 nebo NOx
          GEDF W,i = GEXH W,i × qi
          qi = concE,i - concA,iconcD,i - concA,i
          kde:
          concE = koncentrace vlhkého sledovacího plynu v neředěném výfukovém plynu
          concD = koncentrace vlhkého sledovacího plynu ve zředěném výfukovém plynu
          concA = koncentrace vlhkého sledovacího plynu v ředicím vzduchu
          Koncentrace měřené pro suchý stav se převádějí na vlhký stav podle bodu 4.2. tohoto dodatku.
          5.2.3 Systémy s měřením CO2 a metoda bilance uhlíku [4]
          GEDF W,i = 206,5 × GFUEL,iCO2 D,i - CO2 A,i
          kde:
          CO2D = koncentrace CO2 ve zředěném výfukovém plynu
          CO2A = koncentrace CO2 v ředicím vzduchu
          koncentrace v % objemových ve vlhkém stavu
          Tato rovnice je založena na předpokladu bilance uhlíku (atomy uhlíku dodané motoru jsou emitovány jako CO2) a je odvozena těmito kroky:
          GEDF W,i = GEXH W,i × qi
          a
          qi = 206,5 × GFUEL,iGEXH W,i × CO2 D,i - CO2 A,i
          5.2.4 Systémy s měřením průtoku
          GEDF W,i = GEXH W,i × qi
          qi = GTOT W,iGTOT W,i - GDIL W,i
          5.3 Systém s ředěním plného toku
          Výsledky zkoušky emisí částic, které se uvedou ve zkušebním protokolu, se určí následujícími kroky. Všechny výpočty musí vycházet ze středních hodnot jednotlivých režimů v průběhu doby odběru vzorku.
          GEDF W,i = GTOT W,i
          5.4 Výpočet hmotnostního průtoku částic
          Hmotnostní průtok částic se vypočte takto:
          PTmass = MfMSAM × G‾EDF W1000
          kde:
          G‾EDF W = Σi=1i=n GEDF W,i × WFi
          MSAM = Σi=ni=1MSAM,i
          i = 1, … n
          určené za zkušební cyklus sčítáním středních hodnot pro jednotlivé režimy během doby odběru vzorků.
          Hmotnostní průtok částic může být korigován pozadím takto:
          PTmass = MfMSAMMdMDIL × Σi=1i=n1 - 1DFi × WFi × G‾EDF W1000
          Pokud se provede více než jedno měření, nahradí se MdMDIL hodnotou MdM‾DIL.
          DFi = 13,4(concCO2 + concCO + concHC × 10-4 pro jednotlivé režimy,
          nebo
          DFi = 13,4concCO2 pro jednotlivé režimy.
          5.5 Výpočet specifických emisí
          Emise částic se vypočtou takto:
          PT‾ = PTmassΣ Pni × WFi
          5.6 Efektivní váhový faktor
          Efektivní váhový faktor WFE,i pro každý režim se vypočte takto:
          WFE,i = MSAM,i × G‾EDF WMSAM × GEDF W,i
          Hodnota efektivních váhových faktorů se smí lišit od hodnoty váhových faktorů uvedených v bodě 2.7.1 nejvýše o ± 0,003 (± 0,005 pro režim volnoběhu).
          6. VÝPOČET HODNOT KOUŘE
          6.1 Besselův algoritmus
          K výpočtu jednosekundových středních hodnot z okamžitých údajů hodnot kouře přepočítaných v souladu s bodem 6.3.1 musí být použit Besselův algoritmus. Algoritmus emuluje dolní propust druhého řádu a jeho použití vyžaduje iterativní výpočty k určení koeficientů. Koeficienty jsou funkcí doby odezvy systému opacimetru a četnosti odběru. Proto se musí bod 6.1.1 opakovat vždy, když se mění doba odezvy systému nebo četnost odběru vzorku.
          6.1.1 Výpočet doby odezvy filtru a Besselových konstant
          Požadovaná Besselova doba odezvy tF je funkcí doby fyzikální odezvy a doby elektrické odezvy systému opacimetru podle požadavků bodu 5.2.4 dodatku 4 k příloze III a vypočte se z této rovnice:
          tF = 1 - tp2 + te2
          kde:
          tp = doba fyzikální odezvy, s
          te = doba elektrické odezvy, s
          Výpočet mezní frekvence filtru fc je založen na skokovém vzrůstu vstupní veličiny z 0 na 1 v době ≤ 0,01 s (viz přílohu VII). Doba odezvy je definována jako čas mezi okamžikem, kdy Besselův výstup dosáhne hodnoty 10 % (t10) této skokové funkce, a okamžikem, kdy dosáhne hodnoty 90 % (t90) této funkce. K tomuto účelu se musí provést přiblížení iterací na fc, dokud se nedosáhne t90 – t10 ≈ tp. První iterace fc je dána tímto vzorcem:
          fc = π 10 × tF
          Besselovy konstanty E a K se vypočtou z těchto rovnic:
          E = 11 + Ω × 3 × D + D × Ω2
          K = 2 × E × D × Ω2 - 1 - 1
          kde:
          D = 0,618034
          Δt = 1četnost odběru
          Ω = 1tan π × Δt × fc
          6.1.2 Výpočet Besselova algoritmu
          S použitím hodnot E a K se vypočte jednosekundová Besselova střední odezva na skokovou vstupní veličinu Si takto:
          Yi = Yi - 1 + E × Si + 2 × Si - 1 + Si - 2 - 4 × Yi - 2 + K × Yi - 1 - Yi - 2
          kde:
          Si-2 = Si-1 = 0
          Si = 1
          Yi-2 = Yi-1 = 0
          Časy t10 a t90 se musí interpolovat. Časový rozdíl mezi t90 a t10 definuje dobu odezvy tF pro uvedenou hodnotu fc. Jestliže tato doba odezvy není dostatečně blízká požadované době odezvy, musí se následujícím způsobem pokračovat v iteraci do doby, kdy se skutečná doba odezvy neliší o více než 1 % od požadované doby odezvy:
          t90 - t10 - tF ≤ 0,01 × tF
          6.2 Vyhodnocení změřených hodnot
          Hodnoty měření kouře se musí zachycovat s frekvencí nejméně 20 Hz.
          6.3 Určení hodnot kouře
          6.3.1 Přepočet měřených hodnot
          Protože základní jednotkou měření všech opacimetrů je propustnost, musí se hodnoty kouře přepočítat z propustnosti τ na koeficient absorpce světla k takto:
          k = - 1LA × ln 1 - N100
          a
          N = 100 - τ
          kde:
          k = koeficient absorpce světla, m-1
          LA = efektivní délka optické dráhy podle údaje výrobce přístroje, m
          N = opacita, %
          τ = propustnost, %
          Přepočet se musí vykonat před každým dalším zpracováváním změřených hodnot.
          6.3.2 Výpočet Besselovy střední hodnoty kouře
          Vlastní mezní frekvencí filtru fc se rozumí frekvence, která generuje požadovanou dobu odezvy filtru tF. Jakmile tato frekvence byla určena iterativním postupem podle bodu 6.1.1, vypočtou se vlastní konstanty E a K Besselova algoritmu. Besselův algoritmus se pak použije na okamžitou křivku kouře (hodnota k), jak je popsáno v bodě 6.1.2:
          Yi = Yi - 1 + E × Si + 2 × Si - 1 + Si - 2 - 4 × Yi - 2 + K × Yi - 1 - Yi - 2
          Besselův algoritmus je svou povahou rekurzivní. Proto jsou ke spuštění algoritmu potřebné některé počáteční vstupní hodnoty Si-1 a Si-2 a počáteční výstupní hodnoty Yi-1 a Yi-2. Tyto hodnoty lze předpokládat za rovné nule.
          Pro každý stupeň zatížení při třech hodnotách otáček A, B a C se vybere maximální jednosekundová hodnota Ymax z jednotlivých hodnot Yi každé křivky kouře.
          6.3.3 Konečný výsledek
          Střední hodnoty kouře SV z každého cyklu (zkušebních otáček) se vypočtou takto:
          Pro zkušební otáčky A:  SVA = (Ymax1,A + Ymax2,A + Ymax3,A) / 3
          Pro zkušební otáčky B:  SVB = (Ymax1,B + Ymax2,B + Ymax3,B) / 3
          Pro zkušební otáčky C:  SVC = (Ymax1,C + Ymax2,C + Ymax3,C) / 3
          kde:
          Ymax1, Ymax2, Ymax3 = největší jednosekundová Besselova střední hodnota kouře při každém ze tří stupňů zatížení
          Konečná hodnota se vypočte takto:
          SV = (0,43 × SVA) + (0,56 × SVB) + (0,01 × SVC)
          [1] Zkušební body se musí vybrat s použitím schválených statistických metod náhodného výběru.
          [2] Zkušební body se musí vybrat s použitím schválených statistických metod náhodného výběru.
          [3] Vztaženo na ekvivalent C1.
          [4] Hodnota platí jen pro referenční palivo uvedené v příloze IV.
          --------------------------------------------------
          Dodatek 2
          ZKUŠEBNÍ CYKLUS ETC
          1. POSTUP MAPOVÁNÍ VLASTNOSTÍ MOTORU
          1.1 Určení rozsahu otáček pro mapu vlastností motoru
          K provedení zkoušky ETC na zkušebním stanovišti se musí před zkušebním cyklem zmapovat vlastnosti motoru, aby bylo možno určit křivku závislosti otáček a točivého momentu. Minimální a maximální otáčky pro mapování jsou definovány takto:
          Minimální otáčky pro mapování = volnoběžné otáčky
          Maximální otáčky pro mapování = nhi · 1,02 nebo otáčky, při kterých točivý moment plného zatížení klesne na nulu, podle toho, které z nich jsou nižší
          1.2 Vytvoření mapy výkonových vlastností motoru
          Motor se zahřeje při maximálním výkonu, aby se stabilizovaly parametry motoru podle doporučení výrobce a osvědčené technické praxe. Po stabilizaci motoru se vytvoří mapa vlastností motoru takto:
          a) motor se odlehčí a běží při volnoběžných otáčkách;
          b) motor běží s nastavením vstřikovacího čerpadla na plné zatížení při minimálních otáčkách pro mapování;
          c) otáčky motoru se zvyšují se středním přírůstkem (8 ± 1) min-1/s z minimálních otáček pro mapování na maximální otáčky pro mapování. Body otáček motoru a točivého momentu se zaznamenávají s četností registrace nejméně jeden bod za sekundu.
          1.3 Vytvoření mapovací křivky
          Všechny body měření zaznamenané podle bodu 1.2 se spojí lineární interpolací. Výslednou křivkou točivého momentu je mapovací křivka, která musí být použita k přepočítání normalizovaných hodnot točivého momentu cyklu motoru na skutečné hodnoty točivého momentu motoru pro zkušební cyklus, jak je popsáno v bodě 2.
          1.4 Jiné způsoby mapování
          Jestliže se výrobce domnívá, že výše uvedený postup mapování není jistý nebo není reprezentativní pro kterýkoli daný motor, mohou se použít jiné způsoby mapování. Tyto jiné způsoby musí splňovat záměr vymezených mapovacích postupů k určení maximálního točivého momentu dosažitelného při všech otáčkách motoru, které se vyskytují v průběhu zkušebních cyklů. Odchylky od způsobů mapování uvedených v této části musí být z důvodů spolehlivosti nebo reprezentativnosti schváleny technickou zkušebnou zároveň se zdůvodněním jejich použití. V žádném případě se však nesmějí použít kontinuální sestupné změny otáček motoru u regulovaných motorů nebo u motorů přeplňovaných turbodmychadlem.
          1.5 Opakované zkoušky
          Motor nemusí být zmapován před každým jednotlivým zkušebním cyklem. Motor se musí znovu zmapovat před zkušebním cyklem, jestliže:
          - podle technického posouzení uplynula neúměrně dlouhá doba od posledního zmapování,
          nebo
          - na motoru byly vykonány mechanické změny nebo následná kalibrování, které potenciálně mohou ovlivnit výkonové vlastnosti motoru.
          2. GENEROVÁNÍ REFERENČNÍHO ZKUŠEBNÍHO CYKLU
          Zkušební cyklus neustálených provozních podmínek je popsán v dodatku 3 této přílohy. Normalizované hodnoty točivého momentu a otáček se musí převést, jak je uvedeno dále, na skutečné hodnoty, které dávají referenční cyklus.
          2.1 Skutečné otáčky
          Otáčky se převedou z normalizovaných hodnot podle této rovnice:
          Skutečné otáčky = % otáček referenční otáčky – volnoběžné otáčky100 + volnoběžné otáčky
          Referenční otáčky nref odpovídají 100 % hodnot otáček uvedených v programu motorového dynamometru v dodatku 3. Jsou definovány takto (viz obrázek 1 v příloze I):
          nref = nlo + 95 % × nhi - nlo
          kde nhi a nlo jsou buď vymezeny podle bodu 2 přílohy I, nebo určeny podle bodu 1.1 dodatku 1 k příloze III.
          2.2 Skutečný točivý moment
          Jako točivý moment je normalizován maximální točivý moment při odpovídajících otáčkách. Hodnoty točivého momentu referenčního cyklu se musí převést z normalizovaného stavu následujícím způsobem s použitím mapovací křivky určené podle bodu 1.3:
          Skutečný moment = (% točivého momentu · maximální točivý moment)/100
          pro dotyčné skutečné otáčky určené podle bodu 2.1.
          Ke generování referenčního cyklu se musí vzít jako negativní hodnoty točivého momentu bodů, v kterých je motor poháněn (m), hodnoty převedené z normalizovaného stavu podle jednoho z těchto postupů:
          - 40 % negativních z pozitivního točivého momentu, který je dosažitelný v bodě přidružených otáček,
          - zmapování negativního točivého momentu potřebného k pohánění motoru z minimálních do maximálních otáček pro mapování,
          - určení negativního točivého momentu potřebného k pohánění motoru při volnoběžných otáčkách a při referenčních otáčkách a lineární interpolace mezi oběma těmito body.
          2.3 Příklad postupu převedení z normalizovaného stavu
          Jako příklad se má následující zkušební bod převést do nenormalizovaného stavu:
          % otáček = 43
          % točivého momentu = 82
          Dány jsou tyto hodnoty:
          referenční otáčky = 2200 min- 1
          volnoběžné otáčky = 600 min- 1
          Z toho vyplývá:
          skutečné otáčky = (43 × (2200 – 600)/100) + 600 = 1288 min-1
          skutečný točivý moment = (82 × 700/100) = 574 Nm
          přičemž maximální točivý moment zjištěný z mapovací křivky při otáčkách 1288 min- 1 700 Nm beträgt.
          3. ZKOUŠKY EMISÍ
          Na žádost výrobce se může provést předběžná zkouška ke stabilizování motoru a výfukového systému před měřicím cyklem.
          Motory na zemní plyn a na LPG se musí zaběhnout zkouškou ETC. Motor musí proběhnout nejméně dvěma cykly ETC, dokud emise CO měřené v jednom cyklu ETC nepřekročí o více než 10 % emisí CO změřených v předcházejícím cyklu ETC.
          3.1 Příprava filtrů k odběru vzorků (jen u vznětových motorů)
          Nejméně jednu hodinu před zkouškou se umístí každý filtr (každá dvojice filtrů) do uzavřené, avšak neutěsněné Petriho misky a uloží se do vážicí komory za účelem stabilizace. Na konci stabilizační periody se každý filtr (každá dvojice) zváží a zaznamená se jeho vlastní hmotnost. Filtr (dvojice filtrů) se pak uloží do uzavřené Petriho misky nebo do utěsněného nosiče filtru do doby, kdy bude potřebný ke zkoušce. Jestliže se filtr (dvojice filtrů) nepoužije v průběhu osmi hodin od jeho vyjmutí z vážicí komory, musí se stabilizovat a znovu zvážit před použitím.
          3.2 Instalace měřicího zařízení
          Přístroje a odběrné sondy se instalují požadovaným způsobem. Výfuková trubka se napojí na systém s ředěním plného toku výfukového plynu.
          3.3 Startování ředicího systému a motoru
          Ředicí systém a motor se nastartují a nechají se zahřát až do doby, kdy se všechny teploty a tlaky při maximálním výkonu stabilizují podle doporučení výrobce a osvědčené technické praxe.
          3.4 Startování systému odběru vzorků částic (jen u vznětových motorů)
          Systém odběru vzorků částic se nastartuje a nechá se běžet s obtokem. Hladina pozadí částic v ředicím vzduchu se může určit vedením ředicího vzduchu přes filtry částic. Jestliže se použije filtrovaný ředicí vzduch, může se provést jedno měření před zkouškou nebo po ní. Jestliže ředicí vzduch není filtrován, mohou se provést měření na začátku a na konci cyklu a pak se z nich určí střední hodnoty.
          3.5 Seřízení systému s ředěním plného toku výfukového plynu
          Celkový tok zředěného výfukového plynu se nastaví tak, aby v systému nedošlo k žádné kondenzaci vody a aby maximální teplota ve vstupní části filtru byla nejvýše 325 K (52 °C) viz bod 2.3.1 přílohy V, DT).
          3.6 Přezkoušení analyzátorů
          Analyzátory emisí se vynulují a kalibrují. Jestliže se použijí vaky k jímání vzorků, musí se vyprázdnit.
          3.7 Postup startování motoru
          Stabilizovaný motor se nastartuje podle postupu startování doporučeného výrobcem v příručce uživatele, s použitím buď sériově vyrobeného spouštěče, nebo dynamometru. Volitelně se může motor nastartovat přímo ze stabilizační fáze, přičemž se motor při dosažení volnoběžných otáček nevypne.
          3.8 Zkušební cyklus
          3.8.1 Postup zkoušky
          Když motor dosáhl volnoběžných otáček, zahájí se postup zkoušky. Zkouška se musí vykonat podle referenčního cyklu stanoveného v bodě 2 tohoto dodatku. Body seřízení, které určují otáčky a točivý moment motoru, musí být udávány s frekvencí 5 Hz (doporučená frekvence je 10 Hz) nebo s frekvencí vyšší. Otáčky a točivý moment, kterými reaguje motor, se registrují nejméně jednou každou sekundu v průběhu zkušebního cyklu a signály se mohou elektronicky filtrovat.
          3.8.2 Odezva analyzátoru
          Při startování motoru nebo postupu zkoušky, jestliže je motor nastartován přímo ze stabilizační fáze, se nastartují současně tato měřicí zařízení:
          - začátek odběru nebo analýzy ředicího vzduchu,
          - začátek odběru nebo analýzy zředěného výfukového plynu,
          - začátek měření množství zředěného výfukového plynu (CVS) a požadovaných teplot a tlaků,
          - začátek registrace zpětnovazebních hodnot otáček a točivého momentu dynamometru.
          HC a NOx se musí kontinuálně měřit v ředicím tunelu s frekvencí 2 Hz. Střední koncentrace se určí integrováním signálů analyzátoru po dobu trvání zkušebního cyklu. Doba odezvy systému nesmí být delší než 20 s a popřípadě musí být koordinována s kolísáním toku CVS a s odchylkami doby trvání odběru vzorků / zkušebního cyklu. CO, CO2, NMHC a CH4 se určí integrováním nebo analýzou koncentrací plynů shromážděných v průběhu cyklu ve vacích k odběru vzorků. Koncentrace plynných znečišťujících látek v ředicím vzduchu se určí integrováním nebo shromážděním ve vaku k jímání ředicího vzduchu. Všechny ostatní hodnoty se registrují s nejméně jedním měřením za sekundu (1 Hz).
          3.8.3 Odběr vzorků částic (jen u vznětových motorů)
          Jestliže cyklus začne přímo z fáze stabilizování, přepne se systém odběru vzorků částic z obtoku na shromažďování částic při nastartování motoru nebo na začátku postupu zkoušky.
          Jestliže se nepoužije kompenzace průtoku, seřídí se čerpadlo (čerpadla) k odběru vzorků tak, aby se průtok odběrnou sondou částic nebo přenosovou trubkou udržoval na hodnotě nastaveného průtoku s přípustnou odchylkou ±5 %. Jestliže se použije kompenzace průtoku (např. proporcionální řízení toku vzorků), musí se prokázat, že poměr průtoku hlavním tunelem k průtoku vzorků částic kolísá nejvýše o ± 5 % jeho nastavené hodnoty (kromě prvních 10 sekund odběru vzorků).
          Poznámka:
          Při postupu s dvojitým ředěním je průtok vzorků netto rozdílem mezi průtokem filtry k odběru vzorků a průtokem sekundárního ředicího vzduchu.
          Musí se zaznamenávat střední hodnoty teploty a tlaku na vstupu do plynoměru (plynoměrů) nebo do přístrojů k měření průtoku. Jestliže není možno udržet nastavený průtok v průběhu úplného cyklu (v mezích ± 5 %) vzhledem k vysokému zatížení filtru částicemi, je zkouška neplatná. Zkouška se musí opakovat s menším průtokem nebo s filtrem většího průměru.
          3.8.4 Zastavení motoru
          Jestliže se motor zastaví v kterémkoli okamžiku zkušebního cyklu, musí se stabilizovat a znovu nastartovat a zkouška se musí opakovat. Jestliže dojde v průběhu zkušebního cyklu k chybné funkci některého z požadovaných zkušebních zařízení, je zkouška neplatná.
          3.8.5 Úkony po zkoušce
          Při ukončení zkoušky se zastaví měření objemu zředěného výfukového plynu, průtok plynu do vaků k jímání vzorků a čerpadlo k odběru vzorků částic. U integrovaného systému analyzátoru musí odběr vzorků pokračovat, dokud neuplynou doby odezvy systému.
          Jestliže se použily vaky k jímání vzorků, musí se koncentrace v jejich obsahu analyzovat co nejdříve a v každém případě nejpozději do 20 minut od ukončení zkušebního cyklu.
          Po zkoušce emisí se použije nulovací plyn a tentýž kalibrovací plyn rozpětí k překontrolování analyzátorů. Zkouška se pokládá za platnou, jestliže rozdíl mezi výsledky před zkouškou a po zkoušce je menší než 2 % hodnoty kalibrovacího plynu rozpětí.
          Jen u vznětových motorů se filtry částic vrátí do vážicí komory nejpozději do jedné hodiny po ukončení zkoušky a před vážením se stabilizují v uzavřené, avšak neutěsněné Petriho misce po dobu nejméně jedné hodiny, avšak ne déle než 80 hodin.
          3.9 Ověření provedení zkoušky
          3.9.1 Posun údajů
          Pro minimalizaci zkreslujícího účinku časové prodlevy mezi zpětnovazebními hodnotami a hodnotami referenčního cyklu se může celý sled zpětnovazebních signálů otáček a točivého momentu časově posunout před sled referenčních otáček a točivého momentu nebo za něj. Jestliže se zpětnovazební signály posunou, musí se jak otáčky, tak točivý moment posunout o stejnou hodnotu ve stejném směru.
          3.9.2 Výpočet práce cyklu
          Skutečná práce cyklu Wact (kWh) se vždy vypočte z dvojice zaznamenaných zpětnovazebních otáček motoru a hodnot točivého momentu. Jestliže došlo k této volbě, musí se tento výpočet provést po každém posunutí zpětnovazebních údajů. Skutečná práce cyklu Wact se použije k porovnání s prací referenčního cyklu Wref a k výpočtu emisí specifických pro brzdu (viz body 4.4 a 5.2). Stejná metoda se může použít k integrování jak referenčního, tak skutečného výkonu motoru. Jestliže se mají určit hodnoty mezi sousedními referenčními hodnotami nebo sousedními změřenými hodnotami, provede se lineární interpolace.
          Při integrování práce referenčního cyklu a skutečného cyklu se všechny negativní hodnoty točivého momentu položí rovny nule a započítají se. Jestliže se integrování provede při frekvenci nižší než 5 Hz a jestliže během daného časového úseku se hodnota točivého momentu mění z pozitivní na negativní nebo z negativní na pozitivní, vypočte se negativní podíl a položí se rovný nule. Pozitivní podíl se započítá do integrované hodnoty.
          Wact musí být mezi –15 % a +5 % hodnoty Wref.
          3.9.3 Statistické ověření platnosti zkušebního cyklu
          Pro otáčky, točivý moment a výkon se provedou lineární regrese zpětnovazebních hodnot na referenční hodnoty. Jestliže došlo k této volbě, musí se tento výpočet provést po každém posunutí zpětnovazebních údajů. Musí se použít metoda nejmenších čtverců, přičemž rovnice k nejlepšímu přizpůsobení má tento tvar:
          y = mx + b
          kde:
          y = zpětnovazební (skutečná) hodnota otáček (min-1), točivého momentu (Nm) nebo výkonu (kW)
          m = sklon regresní přímky
          x = referenční hodnota otáček (min-1), točivého momentu (Nm) nebo výkonu (kW)
          b = pořadnice průsečíku regresní přímky s osou y
          Pro každou regresní přímku se vypočte běžná chyba odhadnuté hodnoty SE jako y = f(x), a koeficient určení r2.
          Doporučuje se provést tuto analýzu při 1 Hz. Všechny negativní referenční hodnoty točivého momentu a přiřazené zpětnovazební hodnoty se musí vypustit z výpočtu statistické kontroly platnosti točivého momentu a výkonu pro cyklus. Zkouška se pokládá za platnou, pokud splňuje kritéria tabulky 6.
          Tabulka 6
          Mezní odchylky regresní přímky
          | Otáčky | Točivý moment | Výkon |
          Směrodatná chyba (SE) odhadu y jako funkce x | max. 100 min-1 | max. 13 % (15 %) [1] největšího točivého momentu motoru podle mapy výkonu | max. 8 % (15 %) [1] největšího výkonu motoru podle mapy výkonu |
          Sklon m regresní přímky | 0,95 až 1,03 | 0,83 až 1,03 | 0,89 až 1,03 (0,83 až 1,03) [1] |
          Koeficient určení, r2 | min. 0,9700 (min. 0,9500) [1] | min. 0,8800 (min. 0,7500) [1] | min. 0,9100 (min. 0,7500) [1] |
          Pořadnice b průsečíku regresní přímky s osou y | ± 50 min-1 | ±20 Nm nebo ±2 % (±20 Nm nebo ±3 %)* max. točivého momentu podle toho, která hodnota je větší [1] | ±4 kW nebo ±2 % (±4 kW nebo ±3 %)* max. výkonu podle toho, která hodnota je větší [1] |
          Je přípustné vypustit z regresních analýz body, jak je uvedeno v tabulce 7.
          Tabulka 7
          Přípustná vypuštění bodů z regresní analýzy
          Podmínky | Body, které se vypustí |
          Plné zatížení a zpětnovazební hodnota točivého momentu < referenční hodnota točivého momentu | Točivý moment nebo výkon |
          Bez zatížení, žádný bod volnoběhu a zpětnovazební hodnota točivého momentu > referenční hodnota točivého momentu | Točivý moment nebo výkon |
          Bez zatížení/zavřený akcelerátor, bod a volnoběžné otáčky > referenční volnoběžné otáčky | Otáčky nebo výkon |
          4. VÝPOČET PLYNNÝCH EMISÍ
          4.1 Určení průtoku zředěných výfukových plynů
          Celkový průtok zředěných výfukových plynů za celý cyklus (kg/zkouška) se vypočte ze změřených hodnot v průběhu celého cyklu a z odpovídajících kalibračních údajů zařízení k měření průtoku (V0 pro PDP nebo KV pro CFV podle bodu 2 dodatku 5 k příloze III). Použijí se následující vzorce, jestliže se teplota zředěného výfukového plynu udržuje konstantní v průběhu celého cyklu s použitím výměníku tepla (± 6 K pro PDP-CVS, ± 11 K pro CFV-CVS, viz bod 2.3 přílohy V).
          Pro systém PDP-CVS:
          MTOTW = 1,293 × V0 × Np × (pB – p1) × 273 / (101,3 × T)
          kde:
          MTOTW = hmotnost vlhkého zředěného výfukového plynu za celý cyklus, kg
          V0 = objem plynu načerpaného za otáčku při podmínkách zkoušky, m3/ot
          NP = celkový počet otáček čerpadla za zkoušku
          pB = atmosférický tlak ve zkušební komoře, kPa
          p1 = podtlak ve vstupu čerpadla, kPa
          T = střední teplota zředěného výfukového plynu na vstupu čerpadla za celý cyklus,
          Pro systém CFV-CVS:
          MTOTW = 1,293 × t × Kv × pA / T0,5
          kde:
          MTOTW = hmotnost vlhkého zředěného výfukového plynu za celý cyklus, kg
          t = doba trvání cyklu, s
          Kv = kalibrační koeficient Venturiho trubice s kritickým prouděním pro běžné podmínky
          pA = absolutní tlak na vstupu do Venturiho trubice, kPa
          T = absolutní teplota na vstupu do Venturiho trubice, K
          Jestliže je použit systém s kompenzací průtoku (tj. bez výměníku tepla), musí se vypočítat okamžité hmotnostní emise a integrovat pro celý cyklus. V tomto případě se okamžitá hmotnost zředěného výfukového plynu vypočte takto.
          Pro systém PDP-CVS:
          MTOTW,i = 1,293 × V0 × Np,i × (pB – p1) × 273 / (101,3 × T)
          kde:
          MTOTW,i = okamžitá hmotnost vlhkého zředěného výfukového plynu, kg
          Np,i = celkový počet otáček čerpadla za časový interval
          Pro systém CFV-CVS
          MTOTW,i = 1,293 × Δti × Kv × pA / T0,5
          kde:
          MTOTW,i = okamžitá hmotnost vlhkého zředěného výfukového plynu, kg
          Δti = časový interval, s
          Jestliže ve vzorku celková hmotnost částic (MSAM) a plynných znečišťujících látek překračuje 0,5 % celkového průtoku CVS (MTOTW), koriguje se průtok CVS hmotností MSAM nebo se proud toku vzorku částic před zařízením k měření průtoku (PDP nebo CFV) vede zpět k CVS.
          4.2 Korekce NOx vlhkostí
          Protože emise NOx závisejí na podmínkách okolního vzduchu, koriguje se koncentrace NOx vlhkostí okolního vzduchu s použitím faktorů uvedených v těchto vzorcích:
          a) u vznětových motorů:
          KH,D = 11 - 0,0182 × Ha - 10,71
          b) u plynových motorů:
          KH,G = 11 - 0,0329 × Ha - 10,71
          kde:
          Ha = vlhkost nasávaného vzduchu, udávaná v g vody na 1 kg suchého vzduchu
          přičemž:
          Ha = 6,220 × Ra × papB - pa × Ra × 10-2
          Ra = relativní vlhkost nasávaného vzduchu, %
          pa = tlak par nasyceného nasávaného vzduchu, kPa
          pB = celkový barometrický tlak, kPa
          4.3 Výpočet hmotnostního průtoku emisí
          4.3.1 Systémy s konstantním hmotnostním průtokem
          U systémů s výměníkem tepla se určí hmotnost znečišťujících látek (g/zkouška) z těchto rovnic:
          1.NOx mass = 0,001587 × NOx conc × KH,D × MTOT W vznětové motory
          2.NOx mass = 0,001587 × NOx conc × KH,G × MTOT W plynové motory
          3.COmass = 0,000966 × COconc × MTOT W
          4.HCmass = 0,000479 × HCconc × MTOT W vznětové motory
          5.HCmass = 0,000502 × HCconc × MTOT W motory na LPG
          6.NMHCmass = 0,000516 × NMHCconc × MTOT W motory na NG
          7.CH4 mass = 0,000552 × CH4 conc × MTOT W motory na NG
          kde:
          NOx conc, COconc, HCconc [10], NMHCconc = střední koncentrace korigované pozadím, za celý cyklus, zjištěné integrací (povinné pro NOx a HC) nebo změřené ve vacích, ppm
          MTOTW = celková hmotnost zředěného výfukového plynu za celý cyklus určená podle bodu 4.1, kg
          KH,D = korekční faktor vlhkosti pro vznětové motory určený podle bodu 4.2
          KH,G = korekční faktor vlhkosti pro plynové motory určený podle bodu 4.2
          Koncentrace změřené pro suchý stav se musí převést na vlhký stav podle bodu 4.2 dodatku 1 k příloze III.
          Určení NMHCconc závisí na metodě, která se použila (viz bod 3.3.4 dodatku 4 k příloze III). V obou případech se musí určit koncentrace CH4 a odečíst od koncentrace HC takto:
          a) metoda GC
          NMHCconc = HCconc – CH4 conc
          b) metoda NMC
          NMHCconc = HCbez separátoru × 1 - CEM - HCse separátoremCEE - CEM
          kde:
          HC(se separátorem) = koncentrace HC, když vzorek plynu protéká NMC
          HC(bez separátoru) = koncentrace HC, když vzorek plynu obtéká NMC
          CEM = účinnost vztažená k methanu určená podle bodu 1.8.4.1 dodatku 5 k příloze III
          CEE = účinnost vztažená k ethanu určená podle bodu 1.8.4.2 dodatku 5 k příloze III
          4.3.1.1 Určení koncentrací korigovaných pozadím
          Aby se určily netto koncentrace znečišťujících látek, musí se od změřených koncentrací odečíst střední koncentrace pozadí plynných znečišťujících látek v ředicím vzduchu. Střední hodnoty koncentrací pozadí se mohou určit metodou vaku k odběru vzorků nebo kontinuálním měřením s integrací. Použije se tento vzorec:
          conc = conce - concd × 1 - 1DF
          kde:
          conc = koncentrace dané znečišťující látky ve zředěném výfukovém plynu korigovaná o množství dané znečišťující látky obsažené v ředicím vzduchu, ppm
          conce = koncentrace dané znečišťující látky změřená v zředěném výfukovém plynu, ppm
          concd = koncentrace dané znečišťující látky změřená v ředicím vzduchu, ppm
          DF = faktor ředění
          Faktor ředění se vypočte takto:
          a) pro vznětové motory a pro plynové motory na LPG
          DF = FSCO2, conc e + HCconc e + COconc e × 10-4
          b) pro plynové motory na NG
          DF = FSCO2, conce + NMHCconce + COconce × 10-4
          kde:
          CO2, conce = koncentrace CO2 ve zředěném výfukovém plynu, % objemových
          HCconce = koncentrace HC ve zředěném výfukovém plynu, ppm C1
          NMHCconce = koncentrace NMHC ve zředěném výfukovém plynu, ppm C1
          COconce = koncentrace CO ve zředěném výfukovém plynu, ppm
          FS = stechiometrický faktor
          Koncentrace změřené pro suchý stav se převedou na vlhký stav podle bodu 4.2 dodatku 1 k příloze III.
          Stechiometrický faktor se vypočte takto:
          FS = 100 × χ/χ + y / 2 + 3,76 × χ + y / 4
          kde:
          x, y = složení paliva CxHy
          Jestliže není složení paliva známo, mohou se alternativně použít tyto stechiometrické faktory:
          FS (vznětové motory) = 13,4
          FS (LPG) = 11,6
          FS (NG) = 9,5
          4.3.2 Systémy s kompenzací průtoku
          U systémů bez výměníků tepla se určí hmotnost znečišťujících látek (g/zkouška) výpočtem okamžitých hmotnostních emisí a integrováním okamžitých hodnot za celý cyklus. Také se použije přímo na okamžitou hodnotu koncentrace korekce pozadím. Použijí se tyto vzorce:
          1.NOx mass = Σi = 1n MTOTW,i × NOx conce,i × 0,001587 × KH,D - MTOTW × NOx concd × (1-1/DF) × 0,001587 × KH,D vznětové motory
          2.NOx mass = Σi = 1n MTOTW,i × NOx conce,i × 0,001587 × KH,G - MTOTW × NOx concd × (1-1/DF) × 0,001587 × KH,G plynové motory
          3.COmass = Σi = 1n MTOTW,i × COconce,i × 0,000966 - MTOTW × COconcd × (1-1/DF) × 0,000966
          4.HCmass = Σi = 1n MTOTW,i × HCconce,i × 0,000479 - MTOTW × HCconcd × (1-1/DF) × 0,000479 vznětové motory
          5.HCmass = Σi = 1n MTOTW,i × HCconce,i × 0,000502 - MTOTW × HCconcd × (1-1/DF) × 0,000502 motory na LPG
          6.NMHCmass = Σi = 1n MTOTW,i × NMHCconce,i × 0,000516 - MTOTW × NMHCconcd × (1-1/DF) × 0,000516 motory na NG
          7.CH4 mass = Σi = 1n MTOTW,i × CH4 conce,i × 0,000552 - MTOTW × CH4 concd × (1-1/DF) × 0,000552 motory na NG
          kde:
          conce = koncentrace dané znečišťující látky změřená ve zředěném výfukovém plynu, ppm
          concd = koncentrace dané znečišťující látky změřená v ředicím vzduchu, ppm
          MTOTW,i = okamžitá hmotnost zředěného výfukového plynu (viz bod 4.1), kg
          MTOTW = celková hmotnost zředěného výfukového plynu za celý cyklus (viz bod 4.1), kg
          KH,D = korekční faktor vlhkosti pro vznětové motory určený podle bodu 4.2
          KH,G = korekční faktor vlhkosti pro plynové motory určený podle bodu 4.2
          DF = faktor ředění určený podle bodu 4.3.1.1
          4.4 Výpočet specifických emisí
          Emise (g/kWh) se vypočtou pro všechny jednotlivé složky takto:
          NO‾x = NOx massWact (vznětové a plynové motory)
          CO‾ = COmassWact (vznětové a plynové motory)
          HC‾ = HCmassWact (vznětové motory a motory na LPG)
          NMHC‾ = NMHCmassWact (motory na NG)
          CH‾4 = CH4 massWact (motory na NG)
          kde:
          Wact = skutečná práce vykonaná v cyklu určená podle bodu 3.9.2, kWh
          5. VÝPOČET EMISÍ ČÁSTIC (JEN U VZNĚTOVÝCH MOTORŮ)
          5.1 Výpočet hmotnostního průtoku
          Hmotnost částic (g/zkouška) se vypočte takto:
          PTmass = Mf / MSAM × MTOTW / 1000
          kde:
          Mf = hmotnost částic odebraných ve vzorku za celý cyklus, mg
          MTOTW = celková hmotnost zředěného výfukového plynu za celý cyklus určená podle bodu 4.1, kg
          MSAM = hmotnost zředěného výfukového plynu odebraného z ředicího tunelu sloužícího ke shromažďování částic, kg
          a:
          Mf = Mf,p + Mf,b, jestliže tyto hmotnosti se zjišťují odděleně, mg
          Mf,p = hmotnost částic shromážděných na primárním filtru, mg
          Mf,b = hmotnost částic shromážděných na koncovém filtru, mg
          Jestliže se použije systém dvojitého ředění, odečte se hmotnost sekundárního ředicího vzduchu od celkové hmotnosti dvojitě ředěného výfukového plynu, který prošel odběrnými filtry částic.
          MSAM = MTOT - MSEC
          kde:
          MTOT = hmotnost dvojitě zředěného výfukového plynu, který prošel filtrem částic, kg
          MSEC = hmotnost sekundárního ředicího vzduchu, kg
          Jestliže se určuje hladina částic v pozadí ředicího vzduchu podle bodu 3.4, může se hmotnost částic korigovat pozadím. V tomto případě se hmotnost částic (g/zkouška) vypočte takto:
          PTmass = MfMSAM - MdMDIL × 1 - 1DF × MTOT W1000
          kde:
          Mf, MSAM, MTOTW = viz výše
          MDIL = hmotnost primárního ředicího vzduchu odebraného systémem odběru vzorků částic pozadí, kg
          Md = hmotnost částic pozadí shromážděných z primárního ředicího vzduchu, mg
          DF = faktor ředění určený podle bodu 4.3.1.1
          5.2 Výpočet specifických emisí
          Emise částic (g/kWh) se vypočtou takto:
          PT‾PTmassWact
          kde:
          Wact = skutečná práce vykonaná v cyklu určená podle bodu 3.9.2, kWh
          [1] Do 1. října 2005 se mohou používat čísla uvedená v závorkách pro zkoušky plynových motorů pro schválení typu. (Komise vypracuje zprávu o vývoji techniky plynových motorů a podle svých poznatků potvrdí nebo změní povolené odchylky regresní přímky uvedené v této tabulce pro plynové motory.)
          [10] Vztaženo na ekvivalent C1.
          --------------------------------------------------
          Dodatek 3
          PLÁN PRŮBĚHU ZKOUŠKY ETC S MOTOREM NA DYNAMOMETRU
          "m" = pohon.
          Čas s | Norm. rychlost % | Norm. točivý moment % |
          1 | 0 | 0 |
          2 | 0 | 0 |
          3 | 0 | 0 |
          4 | 0 | 0 |
          5 | 0 | 0 |
          6 | 0 | 0 |
          7 | 0 | 0 |
          8 | 0 | 0 |
          9 | 0 | 0 |
          10 | 0 | 0 |
          11 | 0 | 0 |
          12 | 0 | 0 |
          13 | 0 | 0 |
          14 | 0 | 0 |
          15 | 0 | 0 |
          16 | 0,1 | 1,5 |
          17 | 23,1 | 21,5 |
          18 | 12,6 | 28,5 |
          19 | 21,8 | 71 |
          20 | 19,7 | 76,8 |
          21 | 54,6 | 80,9 |
          22 | 71,3 | 4,9 |
          23 | 55,9 | 18,1 |
          24 | 72 | 85,4 |
          25 | 86,7 | 61,8 |
          26 | 51,7 | 0 |
          27 | 53,4 | 48,9 |
          28 | 34,2 | 87,6 |
          29 | 45,5 | 92,7 |
          30 | 54,6 | 99,5 |
          31 | 64,5 | 96,8 |
          32 | 71,7 | 85,4 |
          33 | 79,4 | 54,8 |
          34 | 89,7 | 99,4 |
          35 | 57,4 | 0 |
          36 | 59,7 | 30,6 |
          37 | 90,1 | "m" |
          38 | 82,9 | "m" |
          39 | 51,3 | "m" |
          40 | 28,5 | "m" |
          41 | 29,3 | "m" |
          42 | 26,7 | "m" |
          43 | 20,4 | "m" |
          44 | 14,1 | 0 |
          45 | 6,5 | 0 |
          46 | 0 | 0 |
          47 | 0 | 0 |
          48 | 0 | 0 |
          49 | 0 | 0 |
          50 | 0 | 0 |
          51 | 0 | 0 |
          52 | 0 | 0 |
          53 | 0 | 0 |
          54 | 0 | 0 |
          55 | 0 | 0 |
          56 | 0 | 0 |
          57 | 0 | 0 |
          58 | 0 | 0 |
          59 | 0 | 0 |
          60 | 0 | 0 |
          61 | 0 | 0 |
          62 | 25,5 | 11,1 |
          63 | 28,5 | 20,9 |
          64 | 32 | 73,9 |
          65 | 4 | 82,3 |
          66 | 34,5 | 80,4 |
          67 | 64,1 | 86 |
          68 | 58 | 0 |
          69 | 50,3 | 83,4 |
          70 | 66,4 | 99,1 |
          71 | 81,4 | 99,6 |
          72 | 88,7 | 73,4 |
          73 | 52,5 | 0 |
          74 | 46,4 | 58,5 |
          75 | 48,6 | 90,9 |
          76 | 55,2 | 99,4 |
          77 | 62,3 | 99 |
          78 | 68,4 | 91,5 |
          79 | 74,5 | 73,7 |
          80 | 38 | 0 |
          81 | 41,8 | 89,6 |
          82 | 47,1 | 99,2 |
          83 | 52,5 | 99,8 |
          84 | 56,9 | 80,8 |
          85 | 58,3 | 11,8 |
          86 | 56,2 | "m" |
          87 | 52 | "m" |
          88 | 43,3 | "m" |
          89 | 36,1 | "m" |
          90 | 27,6 | "m" |
          91 | 21,1 | "m" |
          92 | 8 | 0 |
          93 | 0 | 0 |
          94 | 0 | 0 |
          95 | 0 | 0 |
          96 | 0 | 0 |
          97 | 0 | 0 |
          98 | 0 | 0 |
          99 | 0 | 0 |
          100 | 0 | 0 |
          101 | 0 | 0 |
          102 | 0 | 0 |
          103 | 0 | 0 |
          104 | 0 | 0 |
          105 | 0 | 0 |
          106 | 0 | 0 |
          107 | 0 | 0 |
          108 | 11,6 | 14,8 |
          109 | 0 | 0 |
          110 | 27,2 | 74,8 |
          111 | 17 | 76,9 |
          112 | 36 | 78 |
          113 | 59,7 | 86 |
          114 | 80,8 | 17,9 |
          115 | 49,7 | 0 |
          116 | 65,6 | 86 |
          117 | 78,6 | 72,2 |
          118 | 64,9 | "m" |
          119 | 44,3 | "m" |
          120 | 51,4 | 83,4 |
          121 | 58,1 | 97 |
          122 | 69,3 | 99,3 |
          123 | 72 | 20,8 |
          124 | 72,1 | "m" |
          125 | 65,3 | "m" |
          126 | 64 | "m" |
          127 | 59,7 | "m" |
          128 | 52,8 | "m" |
          129 | 45,9 | "m" |
          130 | 38,7 | "m" |
          131 | 32,4 | "m" |
          132 | 27 | "m" |
          133 | 21,7 | "m" |
          134 | 19,1 | 0,4 |
          135 | 34,7 | 14 |
          136 | 16,4 | 48,6 |
          137 | 0 | 11,2 |
          138 | 1,2 | 2,1 |
          139 | 30,1 | 19,3 |
          140 | 30 | 73,9 |
          141 | 54,4 | 74,4 |
          142 | 77,2 | 55,6 |
          143 | 58,1 | 0 |
          144 | 45 | 82,1 |
          145 | 68,7 | 98,1 |
          146 | 85,7 | 67,2 |
          147 | 60,2 | 0 |
          148 | 59,4 | 98 |
          149 | 72,7 | 99,6 |
          150 | 79,9 | 45 |
          151 | 44,3 | 0 |
          152 | 41,5 | 84,4 |
          153 | 56,2 | 98,2 |
          154 | 65,7 | 99,1 |
          155 | 74,4 | 84,7 |
          156 | 54,4 | 0 |
          157 | 47,9 | 89,7 |
          158 | 54,5 | 99,5 |
          159 | 62,7 | 96,8 |
          160 | 62,3 | 0 |
          161 | 46,2 | 54,2 |
          162 | 44,3 | 83,2 |
          163 | 48,2 | 13,3 |
          164 | 51 | "m" |
          165 | 50 | "m" |
          166 | 49,2 | "m" |
          167 | 49,3 | "m" |
          168 | 49,9 | "m" |
          169 | 51,6 | "m" |
          170 | 49,7 | "m" |
          171 | 48,5 | "m" |
          172 | 50,3 | 72,5 |
          173 | 51,1 | 84,5 |
          174 | 54,6 | 64,8 |
          175 | 56,6 | 76,5 |
          176 | 58 | "m" |
          177 | 53,6 | "m" |
          178 | 40,8 | "m" |
          179 | 32,9 | "m" |
          180 | 26,3 | "m" |
          181 | 20,9 | "m" |
          182 | 10 | 0 |
          183 | 0 | 0 |
          184 | 0 | 0 |
          185 | 0 | 0 |
          186 | 0 | 0 |
          187 | 0 | 0 |
          188 | 0 | 0 |
          189 | 0 | 0 |
          190 | 0 | 0 |
          191 | 0 | 0 |
          192 | 0 | 0 |
          193 | 0 | 0 |
          194 | 0 | 0 |
          195 | 0 | 0 |
          196 | 0 | 0 |
          197 | 0 | 0 |
          198 | 0 | 0 |
          199 | 0 | 0 |
          200 | 0 | 0 |
          201 | 0 | 0 |
          202 | 0 | 0 |
          203 | 0 | 0 |
          204 | 0 | 0 |
          205 | 0 | 0 |
          206 | 0 | 0 |
          207 | 0 | 0 |
          208 | 0 | 0 |
          209 | 0 | 0 |
          210 | 0 | 0 |
          211 | 0 | 0 |
          212 | 0 | 0 |
          213 | 0 | 0 |
          214 | 0 | 0 |
          215 | 0 | 0 |
          216 | 0 | 0 |
          217 | 0 | 0 |
          218 | 0 | 0 |
          219 | 0 | 0 |
          220 | 0 | 0 |
          221 | 0 | 0 |
          222 | 0 | 0 |
          223 | 0 | 0 |
          224 | 0 | 0 |
          225 | 21,2 | 62,7 |
          226 | 30,8 | 75,1 |
          227 | 5,9 | 82,7 |
          228 | 34,6 | 80,3 |
          229 | 59,9 | 87 |
          230 | 84,3 | 86,2 |
          231 | 68,7 | "m" |
          232 | 43,6 | "m" |
          233 | 41,5 | 85,4 |
          234 | 49,9 | 94,3 |
          235 | 60,8 | 99 |
          236 | 70,2 | 99,4 |
          237 | 81,1 | 92,4 |
          238 | 49,2 | 0 |
          239 | 56 | 86,2 |
          240 | 56,2 | 99,3 |
          241 | 61,7 | 99 |
          242 | 69,2 | 99,3 |
          243 | 74,1 | 99,8 |
          244 | 72,4 | 8,4 |
          245 | 71,3 | 0 |
          246 | 71,2 | 9,1 |
          247 | 67,1 | "m" |
          248 | 65,5 | "m" |
          249 | 64,4 | "m" |
          250 | 62,9 | 25,6 |
          251 | 62,2 | 35,6 |
          252 | 62,9 | 24,4 |
          253 | 58,8 | "m" |
          254 | 56,9 | "m" |
          255 | 54,5 | "m" |
          256 | 51,7 | 17 |
          257 | 56,2 | 78,7 |
          258 | 59,5 | 94,7 |
          259 | 65,5 | 99,1 |
          260 | 71,2 | 99,5 |
          261 | 76,6 | 99,9 |
          262 | 79 | 0 |
          263 | 52,9 | 97,5 |
          264 | 53,1 | 99,7 |
          265 | 59 | 99,1 |
          266 | 62,2 | 99 |
          267 | 65 | 99,1 |
          268 | 69 | 83,1 |
          269 | 69,9 | 28,4 |
          270 | 70,6 | 12,5 |
          271 | 68,9 | 8,4 |
          272 | 69,8 | 9,1 |
          273 | 69,6 | 7 |
          274 | 65,7 | "m" |
          275 | 67,1 | "m" |
          276 | 66,7 | "m" |
          277 | 65,6 | "m" |
          278 | 64,5 | "m" |
          279 | 62,9 | "m" |
          280 | 59,3 | "m" |
          281 | 54,1 | "m" |
          282 | 51,3 | "m" |
          283 | 47,9 | "m" |
          284 | 43,6 | "m" |
          285 | 39,4 | "m" |
          286 | 34,7 | "m" |
          287 | 29,8 | "m" |
          288 | 20,9 | 73,4 |
          289 | 36,9 | "m" |
          290 | 35,5 | "m" |
          291 | 20,9 | "m" |
          292 | 49,7 | 11,9 |
          293 | 42,5 | "m" |
          294 | 32 | "m" |
          295 | 23,6 | "m" |
          296 | 19,1 | 0 |
          297 | 15,7 | 73,5 |
          298 | 25,1 | 76,8 |
          299 | 34,5 | 81,4 |
          300 | 44,1 | 87,4 |
          301 | 52,8 | 98,6 |
          302 | 63,6 | 99 |
          303 | 73,6 | 99,7 |
          304 | 62,2 | "m" |
          305 | 29,2 | "m" |
          306 | 46,4 | 22 |
          307 | 47,3 | 13,8 |
          308 | 47,2 | 12,5 |
          309 | 47,9 | 11,5 |
          310 | 47,8 | 35,5 |
          311 | 49,2 | 83,3 |
          312 | 52,7 | 96,4 |
          313 | 57,4 | 99,2 |
          314 | 61,8 | 99 |
          315 | 66,4 | 60,9 |
          316 | 65,8 | "m" |
          317 | 59 | "m" |
          318 | 50,7 | "m" |
          319 | 41,8 | "m" |
          320 | 34,7 | "m" |
          321 | 28,7 | "m" |
          322 | 25,2 | "m" |
          323 | 43 | 24,8 |
          324 | 38,7 | 0 |
          325 | 48,1 | 31,9 |
          326 | 40,3 | 61 |
          327 | 42,4 | 52,1 |
          328 | 46,4 | 47,7 |
          329 | 46,9 | 30,7 |
          330 | 46,1 | 23,1 |
          331 | 45,7 | 23,2 |
          332 | 45,5 | 31,9 |
          333 | 46,4 | 73,6 |
          334 | 51,3 | 60,7 |
          335 | 51,3 | 51,1 |
          336 | 53,2 | 46,8 |
          337 | 53,9 | 50 |
          338 | 53,4 | 52,1 |
          339 | 53,8 | 45,7 |
          340 | 50,6 | 22,1 |
          341 | 47,8 | 26 |
          342 | 41,6 | 17,8 |
          343 | 38,7 | 29,8 |
          344 | 35,9 | 71,6 |
          345 | 34,6 | 47,3 |
          346 | 34,8 | 80,3 |
          347 | 35,9 | 87,2 |
          348 | 38,8 | 90,8 |
          349 | 41,5 | 94,7 |
          350 | 47,1 | 99,2 |
          351 | 53,1 | 99,7 |
          352 | 46,4 | 0 |
          353 | 42,5 | 0,7 |
          354 | 43,6 | 58,6 |
          355 | 47,1 | 87,5 |
          356 | 54,1 | 99,5 |
          357 | 62,9 | 99 |
          358 | 72,6 | 99,6 |
          359 | 82,4 | 99,5 |
          360 | 88 | 99,4 |
          361 | 46,4 | 0 |
          362 | 53,4 | 95,2 |
          363 | 58,4 | 99,2 |
          364 | 61,5 | 99 |
          365 | 64,8 | 99 |
          366 | 68,1 | 99,2 |
          367 | 73,4 | 99,7 |
          368 | 73,3 | 29,8 |
          369 | 73,5 | 14,6 |
          370 | 68,3 | 0 |
          371 | 45,4 | 49,9 |
          372 | 47,2 | 75,7 |
          373 | 44,5 | 9 |
          374 | 47,8 | 10,3 |
          375 | 46,8 | 15,9 |
          376 | 46,9 | 12,7 |
          377 | 46,8 | 8,9 |
          378 | 46,1 | 6,2 |
          379 | 46,1 | "m" |
          380 | 45,5 | "m" |
          381 | 44,7 | "m" |
          382 | 43,8 | "m" |
          383 | 41 | "m" |
          384 | 41,1 | 6,4 |
          385 | 38 | 6,3 |
          386 | 35,9 | 0,3 |
          387 | 33,5 | 0 |
          388 | 53,1 | 48,9 |
          389 | 48,3 | "m" |
          390 | 49,9 | "m" |
          391 | 48 | "m" |
          392 | 45,3 | "m" |
          393 | 41,6 | 3,1 |
          394 | 44,3 | 79 |
          395 | 44,3 | 89,5 |
          396 | 43,4 | 98,8 |
          397 | 44,3 | 98,9 |
          398 | 43 | 98,8 |
          399 | 42,2 | 98,8 |
          400 | 42,7 | 98,8 |
          401 | 45 | 99 |
          402 | 43,6 | 98,9 |
          403 | 42,2 | 98,8 |
          404 | 44,8 | 99 |
          405 | 43,4 | 98,8 |
          406 | 45 | 99 |
          407 | 42,2 | 54,3 |
          408 | 61,2 | 31,9 |
          409 | 56,3 | 72,3 |
          410 | 59,7 | 99,1 |
          411 | 62,3 | 99 |
          412 | 67,9 | 99,2 |
          413 | 69,5 | 99,3 |
          414 | 73,1 | 99,7 |
          415 | 77,7 | 99,8 |
          416 | 79,7 | 99,7 |
          417 | 82,5 | 99,5 |
          418 | 85,3 | 99,4 |
          419 | 86,6 | 99,4 |
          420 | 89,4 | 99,4 |
          421 | 62,2 | 0 |
          422 | 52,7 | 96,4 |
          423 | 50,2 | 99,8 |
          424 | 49,3 | 99,6 |
          425 | 52,2 | 99,8 |
          426 | 51,3 | 100 |
          427 | 51,3 | 100 |
          428 | 51,1 | 100 |
          429 | 51,1 | 100 |
          430 | 51,8 | 99,9 |
          431 | 51,3 | 100 |
          432 | 51,1 | 100 |
          433 | 51,3 | 100 |
          434 | 52,3 | 99,8 |
          435 | 52,9 | 99,7 |
          436 | 53,8 | 99,6 |
          437 | 51,7 | 99,9 |
          438 | 53,5 | 99,6 |
          439 | 52 | 99,8 |
          440 | 51,7 | 99,9 |
          441 | 53,2 | 99,7 |
          442 | 54,2 | 99,5 |
          443 | 55,2 | 99,4 |
          444 | 53,8 | 99,6 |
          445 | 53,1 | 99,7 |
          446 | 55 | 99,4 |
          447 | 57 | 99,2 |
          448 | 61,5 | 99 |
          449 | 59,4 | 5,7 |
          450 | 59 | 0 |
          451 | 57,3 | 59,8 |
          452 | 64,1 | 99 |
          453 | 70,9 | 90,5 |
          454 | 58 | 0 |
          455 | 41,5 | 59,8 |
          456 | 44,1 | 92,6 |
          457 | 46,8 | 99,2 |
          458 | 47,2 | 99,3 |
          459 | 51 | 100 |
          460 | 53,2 | 99,7 |
          461 | 53,1 | 99,7 |
          462 | 55,9 | 53,1 |
          463 | 53,9 | 13,9 |
          464 | 52,5 | "m" |
          465 | 51,7 | "m" |
          466 | 51,5 | 52,2 |
          467 | 52,8 | 80 |
          468 | 54,9 | 95 |
          469 | 57,3 | 99,2 |
          470 | 60,7 | 99,1 |
          471 | 62,4 | "m" |
          472 | 60,1 | "m" |
          473 | 53,2 | "m" |
          474 | 44 | "m" |
          475 | 35,2 | "m" |
          476 | 30,5 | "m" |
          477 | 26,5 | "m" |
          478 | 22,5 | "m" |
          479 | 20,4 | "m" |
          480 | 19,1 | "m" |
          481 | 19,1 | "m" |
          482 | 13,4 | "m" |
          483 | 6,7 | "m" |
          484 | 3,2 | "m" |
          485 | 14,3 | 63,8 |
          486 | 34,1 | 0 |
          487 | 23,9 | 75,7 |
          488 | 31,7 | 79,2 |
          489 | 32,1 | 19,4 |
          490 | 35,9 | 5,8 |
          491 | 36,6 | 0,8 |
          492 | 38,7 | "m" |
          493 | 38,4 | "m" |
          494 | 39,4 | "m" |
          495 | 39,7 | "m" |
          496 | 40,5 | "m" |
          497 | 40,8 | "m" |
          498 | 39,7 | "m" |
          499 | 39,2 | "m" |
          500 | 38,7 | "m" |
          501 | 32,7 | "m" |
          502 | 30,1 | "m" |
          503 | 21,9 | "m" |
          504 | 12,8 | 0 |
          505 | 0 | 0 |
          506 | 0 | 0 |
          507 | 0 | 0 |
          508 | 0 | 0 |
          509 | 0 | 0 |
          510 | 0 | 0 |
          511 | 0 | 0 |
          512 | 0 | 0 |
          513 | 0 | 0 |
          514 | 30,5 | 25,6 |
          515 | 19,7 | 56,9 |
          516 | 16,3 | 45,1 |
          517 | 27,2 | 4,6 |
          518 | 21,7 | 1,3 |
          519 | 29,7 | 28,6 |
          520 | 36,6 | 73,7 |
          521 | 61,3 | 59,5 |
          522 | 40,8 | 0 |
          523 | 36,6 | 27,8 |
          524 | 39,4 | 80,4 |
          525 | 51,3 | 88,9 |
          526 | 58,5 | 11,1 |
          527 | 60,7 | "m" |
          528 | 54,5 | "m" |
          529 | 51,3 | "m" |
          530 | 45,5 | "m" |
          531 | 40,8 | "m" |
          532 | 38,9 | "m" |
          533 | 36,6 | "m" |
          534 | 36,1 | 72,7 |
          535 | 44,8 | 78,9 |
          536 | 51,6 | 91,1 |
          537 | 59,1 | 99,1 |
          538 | 66 | 99,1 |
          539 | 75,1 | 99,9 |
          540 | 81 | 8 |
          541 | 39,1 | 0 |
          542 | 53,8 | 89,7 |
          543 | 59,7 | 99,1 |
          544 | 64,8 | 99 |
          545 | 70,6 | 96,1 |
          546 | 72,6 | 19,6 |
          547 | 72 | 6,3 |
          548 | 68,9 | 0,1 |
          549 | 67,7 | "m" |
          550 | 66,8 | "m" |
          551 | 64,3 | 16,9 |
          552 | 64,9 | 7 |
          553 | 63,6 | 12,5 |
          554 | 63 | 7,7 |
          555 | 64,4 | 38,2 |
          556 | 63 | 11,8 |
          557 | 63,6 | 0 |
          558 | 63,3 | 5 |
          559 | 60,1 | 9,1 |
          560 | 61 | 8,4 |
          561 | 59,7 | 0,9 |
          562 | 58,7 | "m" |
          563 | 56 | "m" |
          564 | 53,9 | "m" |
          565 | 52,1 | "m" |
          566 | 49,9 | "m" |
          567 | 46,4 | "m" |
          568 | 43,6 | "m" |
          569 | 40,8 | "m" |
          570 | 37,5 | "m" |
          571 | 27,8 | "m" |
          572 | 17,1 | 0,6 |
          573 | 12,2 | 0,9 |
          574 | 11,5 | 1,1 |
          575 | 8,7 | 0,5 |
          576 | 8 | 0,9 |
          577 | 5,3 | 0,2 |
          578 | 4 | 0 |
          579 | 3,9 | 0 |
          580 | 0 | 0 |
          581 | 0 | 0 |
          582 | 0 | 0 |
          583 | 0 | 0 |
          584 | 0 | 0 |
          585 | 0 | 0 |
          586 | 0 | 0 |
          587 | 8,7 | 22,8 |
          588 | 16,2 | 49,4 |
          589 | 23,6 | 56 |
          590 | 21,1 | 56,1 |
          591 | 23,6 | 56 |
          592 | 46,2 | 68,8 |
          593 | 68,4 | 61,2 |
          594 | 58,7 | "m" |
          595 | 31,6 | "m" |
          596 | 19,9 | 8,8 |
          597 | 32,9 | 70,2 |
          598 | 43 | 79 |
          599 | 57,4 | 98,9 |
          600 | 72,1 | 73,8 |
          601 | 53 | 0 |
          602 | 48,1 | 86 |
          603 | 56,2 | 99 |
          604 | 65,4 | 98,9 |
          605 | 72,9 | 99,7 |
          606 | 67,5 | "m" |
          607 | 39 | "m" |
          608 | 41,9 | 38,1 |
          609 | 44,1 | 80,4 |
          610 | 46,8 | 99,4 |
          611 | 48,7 | 99,9 |
          612 | 50,5 | 99,7 |
          613 | 52,5 | 90,3 |
          614 | 51 | 1,8 |
          615 | 50 | "m" |
          616 | 49,1 | "m" |
          617 | 47 | "m" |
          618 | 43,1 | "m" |
          619 | 39,2 | "m" |
          620 | 40,6 | 0,5 |
          621 | 41,8 | 53,4 |
          622 | 44,4 | 65,1 |
          623 | 48,1 | 67,8 |
          624 | 53,8 | 99,2 |
          625 | 58,6 | 98,9 |
          626 | 63,6 | 98,8 |
          627 | 68,5 | 99,2 |
          628 | 72,2 | 89,4 |
          629 | 77,1 | 0 |
          630 | 57,8 | 79,1 |
          631 | 60,3 | 98,8 |
          632 | 61,9 | 98,8 |
          633 | 63,8 | 98,8 |
          634 | 64,7 | 98,9 |
          635 | 65,4 | 46,5 |
          636 | 65,7 | 44,5 |
          637 | 65,6 | 3,5 |
          638 | 49,1 | 0 |
          639 | 50,4 | 73,1 |
          640 | 50,5 | "m" |
          641 | 51 | "m" |
          642 | 49,4 | "m" |
          643 | 49,2 | "m" |
          644 | 48,6 | "m" |
          645 | 47,5 | "m" |
          646 | 46,5 | "m" |
          647 | 46 | 11,3 |
          648 | 45,6 | 42,8 |
          649 | 47,1 | 83 |
          650 | 46,2 | 99,3 |
          651 | 47,9 | 99,7 |
          652 | 49,5 | 99,9 |
          653 | 50,6 | 99,7 |
          654 | 51 | 99,6 |
          655 | 53 | 99,3 |
          656 | 54,9 | 99,1 |
          657 | 55,7 | 99 |
          658 | 56 | 99 |
          659 | 56,1 | 9,3 |
          660 | 55,6 | "m" |
          661 | 55,4 | "m" |
          662 | 54,9 | 51,3 |
          663 | 54,9 | 59,8 |
          664 | 54 | 39,3 |
          665 | 53,8 | "m" |
          666 | 52 | "m" |
          667 | 50,4 | "m" |
          668 | 50,6 | 0 |
          669 | 49,3 | 41,7 |
          670 | 50 | 73,2 |
          671 | 50,4 | 99,7 |
          672 | 51,9 | 99,5 |
          673 | 53,6 | 99,3 |
          674 | 54,6 | 99,1 |
          675 | 56 | 99 |
          676 | 55,8 | 99 |
          677 | 58,4 | 98,9 |
          678 | 59,9 | 98,8 |
          679 | 60,9 | 98,8 |
          680 | 63 | 98,8 |
          681 | 64,3 | 98,9 |
          682 | 64,8 | 64 |
          683 | 65,9 | 46,5 |
          684 | 66,2 | 28,7 |
          685 | 65,2 | 1,8 |
          686 | 65 | 6,8 |
          687 | 63,6 | 53,6 |
          688 | 62,4 | 82,5 |
          689 | 61,8 | 98,8 |
          690 | 59,8 | 98,8 |
          691 | 59,2 | 98,8 |
          692 | 59,7 | 98,8 |
          693 | 61,2 | 98,8 |
          694 | 62,2 | 49,4 |
          695 | 62,8 | 37,2 |
          696 | 63,5 | 46,3 |
          697 | 64,7 | 72,3 |
          698 | 64,7 | 72,3 |
          699 | 65,4 | 77,4 |
          700 | 66,1 | 69,3 |
          701 | 64,3 | "m" |
          702 | 64,3 | "m" |
          703 | 63 | "m" |
          704 | 62,2 | "m" |
          705 | 61,6 | "m" |
          706 | 62,4 | "m" |
          707 | 62,2 | "m" |
          708 | 61 | "m" |
          709 | 58,7 | "m" |
          710 | 55,5 | "m" |
          711 | 51,7 | "m" |
          712 | 49,2 | "m" |
          713 | 48,8 | 40,4 |
          714 | 47,9 | "m" |
          715 | 46,2 | "m" |
          716 | 45,6 | 9,8 |
          717 | 45,6 | 34,5 |
          718 | 45,5 | 37,1 |
          719 | 43,8 | "m" |
          720 | 41,9 | "m" |
          721 | 41,3 | "m" |
          722 | 41,4 | "m" |
          723 | 41,2 | "m" |
          724 | 41,8 | "m" |
          725 | 41,8 | "m" |
          726 | 43,2 | 17,4 |
          727 | 45 | 29 |
          728 | 44,2 | "m" |
          729 | 43,9 | "m" |
          730 | 38 | 10,7 |
          731 | 56,8 | "m" |
          732 | 57,1 | "m" |
          733 | 52 | "m" |
          734 | 44,4 | "m" |
          735 | 40,2 | "m" |
          736 | 39,2 | 16,5 |
          737 | 38,9 | 73,2 |
          738 | 39,9 | 89,8 |
          739 | 42,3 | 98,6 |
          740 | 43,7 | 98,8 |
          741 | 45,5 | 99,1 |
          742 | 45,6 | 99,2 |
          743 | 48,1 | 99,7 |
          744 | 49 | 100 |
          745 | 49,8 | 99,9 |
          746 | 49,8 | 99,9 |
          747 | 51,9 | 99,5 |
          748 | 52,3 | 99,4 |
          749 | 53,3 | 99,3 |
          750 | 52,9 | 99,3 |
          751 | 54,3 | 99,2 |
          752 | 55,5 | 99,1 |
          753 | 56,7 | 99 |
          754 | 61,7 | 98,8 |
          755 | 64,3 | 47,4 |
          756 | 64,7 | 1,8 |
          757 | 66,2 | "m" |
          758 | 49,1 | "m" |
          759 | 52,1 | 46 |
          760 | 52,6 | 61 |
          761 | 52,9 | 0 |
          762 | 52,3 | 20,4 |
          763 | 54,2 | 56,7 |
          764 | 55,4 | 59,8 |
          765 | 56,1 | 49,2 |
          766 | 56,8 | 33,7 |
          767 | 57,2 | 96 |
          768 | 58,6 | 98,9 |
          769 | 59,5 | 98,8 |
          770 | 61,2 | 98,8 |
          771 | 62,1 | 98,8 |
          772 | 62,7 | 98,8 |
          773 | 62,8 | 98,8 |
          774 | 64 | 98,9 |
          775 | 63,2 | 46,3 |
          776 | 62,4 | "m" |
          777 | 60,3 | "m" |
          778 | 58,7 | "m" |
          779 | 57,2 | "m" |
          780 | 56,1 | "m" |
          781 | 56 | 9,3 |
          782 | 55,2 | 26,3 |
          783 | 54,8 | 42,8 |
          784 | 55,7 | 47,1 |
          785 | 56,6 | 52,4 |
          786 | 58 | 50,3 |
          787 | 58,6 | 20,6 |
          788 | 58,7 | "m" |
          789 | 59,3 | "m" |
          790 | 58,6 | "m" |
          791 | 60,5 | 9,7 |
          792 | 59,2 | 9,6 |
          793 | 59,9 | 9,6 |
          794 | 59,6 | 9,6 |
          795 | 59,9 | 6,2 |
          796 | 59,9 | 9,6 |
          797 | 60,5 | 13,1 |
          798 | 60,3 | 20,7 |
          799 | 59,9 | 31 |
          800 | 60,5 | 42 |
          801 | 61,5 | 52,5 |
          802 | 60,9 | 51,4 |
          803 | 61,2 | 57,7 |
          804 | 62,8 | 98,8 |
          805 | 63,4 | 96,1 |
          806 | 64,6 | 45,4 |
          807 | 64,1 | 5 |
          808 | 63 | 3,2 |
          809 | 62,7 | 14,9 |
          810 | 63,5 | 35,8 |
          811 | 64,1 | 73,3 |
          812 | 64,3 | 37,4 |
          813 | 64,1 | 21 |
          814 | 63,7 | 21 |
          815 | 62,9 | 18 |
          816 | 62,4 | 32,7 |
          817 | 61,7 | 46,2 |
          818 | 59,8 | 45,1 |
          819 | 57,4 | 43,9 |
          820 | 54,8 | 42,8 |
          821 | 54,3 | 65,2 |
          822 | 52,9 | 62,1 |
          823 | 52,4 | 30,6 |
          824 | 50,4 | "m" |
          825 | 48,6 | "m" |
          826 | 47,9 | "m" |
          827 | 46,8 | "m" |
          828 | 46,9 | 9,4 |
          829 | 49,5 | 41,7 |
          830 | 50,5 | 37,8 |
          831 | 52,3 | 20,4 |
          832 | 54,1 | 30,7 |
          833 | 56,3 | 41,8 |
          834 | 58,7 | 26,5 |
          835 | 57,3 | "m" |
          836 | 59 | "m" |
          837 | 59,8 | "m" |
          838 | 60,3 | "m" |
          839 | 61,2 | "m" |
          840 | 61,8 | "m" |
          841 | 62,5 | "m" |
          842 | 62,4 | "m" |
          843 | 61,5 | "m" |
          844 | 63,7 | "m" |
          845 | 61,9 | "m" |
          846 | 61,6 | 29,7 |
          847 | 60,3 | "m" |
          848 | 59,2 | "m" |
          849 | 57,3 | "m" |
          850 | 52,3 | "m" |
          851 | 49,3 | "m" |
          852 | 47,3 | "m" |
          853 | 46,3 | 38,8 |
          854 | 46,8 | 35,1 |
          855 | 46,6 | "m" |
          856 | 44,3 | "m" |
          857 | 43,1 | "m" |
          858 | 42,4 | 2,1 |
          859 | 41,8 | 2,4 |
          860 | 43,8 | 68,8 |
          861 | 44,6 | 89,2 |
          862 | 46 | 99,2 |
          863 | 46,9 | 99,4 |
          864 | 47,9 | 99,7 |
          865 | 50,2 | 99,8 |
          866 | 51,2 | 99,6 |
          867 | 52,3 | 99,4 |
          868 | 53 | 99,3 |
          869 | 54,2 | 99,2 |
          870 | 55,5 | 99,1 |
          871 | 56,7 | 99 |
          872 | 57,3 | 98,9 |
          873 | 58 | 98,9 |
          874 | 60,5 | 31,1 |
          875 | 60,2 | "m" |
          876 | 60,3 | "m" |
          877 | 60,5 | 6,3 |
          878 | 61,4 | 19,3 |
          879 | 60,3 | 1,2 |
          880 | 60,5 | 2,9 |
          881 | 61,2 | 34,1 |
          882 | 61,6 | 13,2 |
          883 | 61,5 | 16,4 |
          884 | 61,2 | 16,4 |
          885 | 61,3 | "m" |
          886 | 63,1 | "m" |
          887 | 63,2 | 4,8 |
          888 | 62,3 | 22,3 |
          889 | 62 | 38,5 |
          890 | 61,6 | 29,6 |
          891 | 61,6 | 26,6 |
          892 | 61,8 | 28,1 |
          893 | 62 | 29,6 |
          894 | 62 | 16,3 |
          895 | 61,1 | "m" |
          896 | 61,2 | "m" |
          897 | 60,7 | 19,2 |
          898 | 60,7 | 32,5 |
          899 | 60,9 | 17,8 |
          900 | 60,1 | 19,2 |
          901 | 59,3 | 38,2 |
          902 | 59,9 | 45 |
          903 | 59,4 | 32,4 |
          904 | 59,2 | 23,5 |
          905 | 59,5 | 40,8 |
          906 | 58,3 | "m" |
          907 | 58,2 | "m" |
          908 | 57,6 | "m" |
          909 | 57,1 | "m" |
          910 | 57 | 0,6 |
          911 | 57 | 26,3 |
          912 | 56,5 | 29,2 |
          913 | 56,3 | 20,5 |
          914 | 56,1 | "m" |
          915 | 55,2 | "m" |
          916 | 54,7 | 17,5 |
          917 | 55,2 | 29,2 |
          918 | 55,2 | 29,2 |
          919 | 55,9 | 16 |
          920 | 55,9 | 26,3 |
          921 | 56,1 | 36,5 |
          922 | 55,8 | 19 |
          923 | 55,9 | 9,2 |
          924 | 55,8 | 21,9 |
          925 | 56,4 | 42,8 |
          926 | 56,4 | 38 |
          927 | 56,4 | 11 |
          928 | 56,4 | 35,1 |
          929 | 54 | 7,3 |
          930 | 53,4 | 5,4 |
          931 | 52,3 | 27,6 |
          932 | 52,1 | 32 |
          933 | 52,3 | 33,4 |
          934 | 52,2 | 34,9 |
          935 | 52,8 | 60,1 |
          936 | 53,7 | 69,7 |
          937 | 54 | 70,7 |
          938 | 55,1 | 71,7 |
          939 | 55,2 | 46 |
          940 | 54,7 | 12,6 |
          941 | 52,5 | 0 |
          942 | 51,8 | 24,7 |
          943 | 51,4 | 43,9 |
          944 | 50,9 | 71,1 |
          945 | 51,2 | 76,8 |
          946 | 50,3 | 87,5 |
          947 | 50,2 | 99,8 |
          948 | 50,9 | 100 |
          949 | 49,9 | 99,7 |
          950 | 50,9 | 100 |
          951 | 49,8 | 99,7 |
          952 | 50,4 | 99,8 |
          953 | 50,4 | 99,8 |
          954 | 49,7 | 99,7 |
          955 | 51 | 100 |
          956 | 50,3 | 99,8 |
          957 | 50,2 | 99,8 |
          958 | 49,9 | 99,7 |
          959 | 50,9 | 100 |
          960 | 50 | 99,7 |
          961 | 50,2 | 99,8 |
          962 | 50,2 | 99,8 |
          963 | 49,9 | 99,7 |
          964 | 50,4 | 99,8 |
          965 | 50,2 | 99,8 |
          966 | 50,3 | 99,8 |
          967 | 49,9 | 99,7 |
          968 | 51,1 | 100 |
          969 | 50,6 | 99,9 |
          970 | 49,9 | 99,7 |
          971 | 49,6 | 99,6 |
          972 | 49,4 | 99,6 |
          973 | 49 | 99,5 |
          974 | 49,8 | 99,7 |
          975 | 50,9 | 100 |
          976 | 50,4 | 99,8 |
          977 | 49,8 | 99,7 |
          978 | 49,1 | 99,5 |
          979 | 50,4 | 99,8 |
          980 | 49,8 | 99,7 |
          981 | 49,3 | 99,5 |
          982 | 49,1 | 99,5 |
          983 | 49,9 | 99,7 |
          984 | 49,1 | 99,5 |
          985 | 50,4 | 99,8 |
          986 | 50,9 | 100 |
          987 | 51,4 | 99,9 |
          988 | 51,5 | 99,9 |
          989 | 52,2 | 99,7 |
          990 | 52,8 | 74,1 |
          991 | 53,3 | 46 |
          992 | 53,6 | 36,4 |
          993 | 53,4 | 33,5 |
          994 | 53,9 | 58,9 |
          995 | 55,2 | 73,8 |
          996 | 55,8 | 52,4 |
          997 | 55,7 | 9,2 |
          998 | 55,8 | 2,2 |
          999 | 56,4 | 33,6 |
          1000 | 55,4 | "m" |
          1001 | 55,2 | "m" |
          1002 | 55,8 | 26,3 |
          1003 | 55,8 | 23,3 |
          1004 | 56,4 | 50,2 |
          1005 | 57,6 | 68,3 |
          1006 | 58,8 | 90,2 |
          1007 | 59,9 | 98,9 |
          1008 | 62,3 | 98,8 |
          1009 | 63,1 | 74,4 |
          1010 | 63,7 | 49,4 |
          1011 | 63,3 | 9,8 |
          1012 | 48 | 0 |
          1013 | 47,9 | 73,5 |
          1014 | 49,9 | 99,7 |
          1015 | 49,9 | 48,8 |
          1016 | 49,6 | 2,3 |
          1017 | 49,9 | "m" |
          1018 | 49,3 | "m" |
          1019 | 49,7 | 47,5 |
          1020 | 49,1 | "m" |
          1021 | 49,4 | "m" |
          1022 | 48,3 | "m" |
          1023 | 49,4 | "m" |
          1024 | 48,5 | "m" |
          1025 | 48,7 | "m" |
          1026 | 48,7 | "m" |
          1027 | 49,1 | "m" |
          1028 | 49 | "m" |
          1029 | 49,8 | "m" |
          1030 | 48,7 | "m" |
          1031 | 48,5 | "m" |
          1032 | 49,3 | 31,3 |
          1033 | 49,7 | 45,3 |
          1034 | 48,3 | 44,5 |
          1035 | 49,8 | 61 |
          1036 | 49,4 | 64,3 |
          1037 | 49,8 | 64,4 |
          1038 | 50,5 | 65,6 |
          1039 | 50,3 | 64,5 |
          1040 | 51,2 | 82,9 |
          1041 | 50,5 | 86 |
          1042 | 50,6 | 89 |
          1043 | 50,4 | 81,4 |
          1044 | 49,9 | 49,9 |
          1045 | 49,1 | 20,1 |
          1046 | 47,9 | 24 |
          1047 | 48,1 | 36,2 |
          1048 | 47,5 | 34,5 |
          1049 | 46,9 | 30,3 |
          1050 | 47,7 | 53,5 |
          1051 | 46,9 | 61,6 |
          1052 | 46,5 | 73,6 |
          1053 | 48 | 84,6 |
          1054 | 47,2 | 87,7 |
          1055 | 48,7 | 80 |
          1056 | 48,7 | 50,4 |
          1057 | 47,8 | 38,6 |
          1058 | 48,8 | 63,1 |
          1059 | 47,4 | 5 |
          1060 | 47,3 | 47,4 |
          1061 | 47,3 | 49,8 |
          1062 | 46,9 | 23,9 |
          1063 | 46,7 | 44,6 |
          1064 | 46,8 | 65,2 |
          1065 | 46,9 | 60,4 |
          1066 | 46,7 | 61,5 |
          1067 | 45,5 | "m" |
          1068 | 45,5 | "m" |
          1069 | 44,2 | "m" |
          1070 | 43 | "m" |
          1071 | 42,5 | "m" |
          1072 | 41 | "m" |
          1073 | 39,9 | "m" |
          1074 | 39,9 | 38,2 |
          1075 | 40,1 | 48,1 |
          1076 | 39,9 | 48 |
          1077 | 39,4 | 59,3 |
          1078 | 43,8 | 19,8 |
          1079 | 52,9 | 0 |
          1080 | 52,8 | 88,9 |
          1081 | 53,4 | 99,5 |
          1082 | 54,7 | 99,3 |
          1083 | 56,3 | 99,1 |
          1084 | 57,5 | 99 |
          1085 | 59 | 98,9 |
          1086 | 59,8 | 98,9 |
          1087 | 60,1 | 98,9 |
          1088 | 61,8 | 48,3 |
          1089 | 61,8 | 55,6 |
          1090 | 61,7 | 59,8 |
          1091 | 62 | 55,6 |
          1092 | 62,3 | 29,6 |
          1093 | 62 | 19,3 |
          1094 | 61,3 | 7,9 |
          1095 | 61,1 | 19,2 |
          1096 | 61,2 | 43 |
          1097 | 61,1 | 59,7 |
          1098 | 61,1 | 98,8 |
          1099 | 61,3 | 98,8 |
          1100 | 61,3 | 26,6 |
          1101 | 60,4 | "m" |
          1102 | 58,8 | "m" |
          1103 | 57,7 | "m" |
          1104 | 56 | "m" |
          1105 | 54,7 | "m" |
          1106 | 53,3 | "m" |
          1107 | 52,6 | 23,2 |
          1108 | 53,4 | 84,2 |
          1109 | 53,9 | 99,4 |
          1110 | 54,9 | 99,3 |
          1111 | 55,8 | 99,2 |
          1112 | 57,1 | 99 |
          1113 | 56,5 | 99,1 |
          1114 | 58,9 | 98,9 |
          1115 | 58,7 | 98,9 |
          1116 | 59,8 | 98,9 |
          1117 | 61 | 98,8 |
          1118 | 60,7 | 19,2 |
          1119 | 59,4 | "m" |
          1120 | 57,9 | "m" |
          1121 | 57,6 | "m" |
          1122 | 56,3 | "m" |
          1123 | 55 | "m" |
          1124 | 53,7 | "m" |
          1125 | 52,1 | "m" |
          1126 | 51,1 | "m" |
          1127 | 49,7 | 25,8 |
          1128 | 49,1 | 46,1 |
          1129 | 48,7 | 46,9 |
          1130 | 48,2 | 46,7 |
          1131 | 48 | 70 |
          1132 | 48 | 70 |
          1133 | 47,2 | 67,6 |
          1134 | 47,3 | 67,6 |
          1135 | 46,6 | 74,7 |
          1136 | 47,4 | 13 |
          1137 | 46,3 | "m" |
          1138 | 45,4 | "m" |
          1139 | 45,5 | 24,8 |
          1140 | 44,8 | 73,8 |
          1141 | 46,6 | 99 |
          1142 | 46,3 | 98,9 |
          1143 | 48,5 | 99,4 |
          1144 | 49,9 | 99,7 |
          1145 | 49,1 | 99,5 |
          1146 | 49,1 | 99,5 |
          1147 | 51 | 100 |
          1148 | 51,5 | 99,9 |
          1149 | 50,9 | 100 |
          1150 | 51,6 | 99,9 |
          1151 | 52,1 | 99,7 |
          1152 | 50,9 | 100 |
          1153 | 52,2 | 99,7 |
          1154 | 51,5 | 98,3 |
          1155 | 51,5 | 47,2 |
          1156 | 50,8 | 78,4 |
          1157 | 50,3 | 83 |
          1158 | 50,3 | 31,7 |
          1159 | 49,3 | 31,3 |
          1160 | 48,8 | 21,5 |
          1161 | 47,8 | 59,4 |
          1162 | 48,1 | 77,1 |
          1163 | 48,4 | 87,6 |
          1164 | 49,6 | 87,5 |
          1165 | 51 | 81,4 |
          1166 | 51,6 | 66,7 |
          1167 | 53,3 | 63,2 |
          1168 | 55,2 | 62 |
          1169 | 55,7 | 43,9 |
          1170 | 56,4 | 30,7 |
          1171 | 56,8 | 23,4 |
          1172 | 57 | "m" |
          1173 | 57,6 | "m" |
          1174 | 56,9 | "m" |
          1175 | 56,4 | 4 |
          1176 | 57 | 23,4 |
          1177 | 56,4 | 41,7 |
          1178 | 57 | 49,2 |
          1179 | 57,7 | 56,6 |
          1180 | 58,6 | 56,6 |
          1181 | 58,9 | 64 |
          1182 | 59,4 | 68,2 |
          1183 | 58,8 | 71,4 |
          1184 | 60,1 | 71,3 |
          1185 | 60,6 | 79,1 |
          1186 | 60,7 | 83,3 |
          1187 | 60,7 | 77,1 |
          1188 | 60 | 73,5 |
          1189 | 60,2 | 55,5 |
          1190 | 59,7 | 54,4 |
          1191 | 59,8 | 73,3 |
          1192 | 59,8 | 77,9 |
          1193 | 59,8 | 73,9 |
          1194 | 60 | 76,5 |
          1195 | 59,5 | 82,3 |
          1196 | 59,9 | 82,8 |
          1197 | 59,8 | 65,8 |
          1198 | 59 | 48,6 |
          1199 | 58,9 | 62,2 |
          1200 | 59,1 | 70,4 |
          1201 | 58,9 | 62,1 |
          1202 | 58,4 | 67,4 |
          1203 | 58,7 | 58,9 |
          1204 | 58,3 | 57,7 |
          1205 | 57,5 | 57,8 |
          1206 | 57,2 | 57,6 |
          1207 | 57,1 | 42,6 |
          1208 | 57 | 70,1 |
          1209 | 56,4 | 59,6 |
          1210 | 56,7 | 39 |
          1211 | 55,9 | 68,1 |
          1212 | 56,3 | 79,1 |
          1213 | 56,7 | 89,7 |
          1214 | 56 | 89,4 |
          1215 | 56 | 93,1 |
          1216 | 56,4 | 93,1 |
          1217 | 56,7 | 94,4 |
          1218 | 56,9 | 94,8 |
          1219 | 57 | 94,1 |
          1220 | 57,7 | 94,3 |
          1221 | 57,5 | 93,7 |
          1222 | 58,4 | 93,2 |
          1223 | 58,7 | 93,2 |
          1224 | 58,2 | 93,7 |
          1225 | 58,5 | 93,1 |
          1226 | 58,8 | 86,2 |
          1227 | 59 | 72,9 |
          1228 | 58,2 | 59,9 |
          1229 | 57,6 | 8,5 |
          1230 | 57,1 | 47,6 |
          1231 | 57,2 | 74,4 |
          1232 | 57 | 79,1 |
          1233 | 56,7 | 67,2 |
          1234 | 56,8 | 69,1 |
          1235 | 56,9 | 71,3 |
          1236 | 57 | 77,3 |
          1237 | 57,4 | 78,2 |
          1238 | 57,3 | 70,6 |
          1239 | 57,7 | 64 |
          1240 | 57,5 | 55,6 |
          1241 | 58,6 | 49,6 |
          1242 | 58,2 | 41,1 |
          1243 | 58,8 | 40,6 |
          1244 | 58,3 | 21,1 |
          1245 | 58,7 | 24,9 |
          1246 | 59,1 | 24,8 |
          1247 | 58,6 | "m" |
          1248 | 58,8 | "m" |
          1249 | 58,8 | "m" |
          1250 | 58,7 | "m" |
          1251 | 59,1 | "m" |
          1252 | 59,1 | "m" |
          1253 | 59,4 | "m" |
          1254 | 60,6 | 2,6 |
          1255 | 59,6 | "m" |
          1256 | 60,1 | "m" |
          1257 | 60,6 | "m" |
          1258 | 59,6 | 4,1 |
          1259 | 60,7 | 7,1 |
          1260 | 60,5 | "m" |
          1261 | 59,7 | "m" |
          1262 | 59,6 | "m" |
          1263 | 59,8 | "m" |
          1264 | 59,6 | 4,9 |
          1265 | 60,1 | 5,9 |
          1266 | 59,9 | 6,1 |
          1267 | 59,7 | "m" |
          1268 | 59,6 | "m" |
          1269 | 59,7 | 22 |
          1270 | 59,8 | 10,3 |
          1271 | 59,9 | 10 |
          1272 | 60,6 | 6,2 |
          1273 | 60,5 | 7,3 |
          1274 | 60,2 | 14,8 |
          1275 | 60,6 | 8,2 |
          1276 | 60,6 | 5,5 |
          1277 | 61 | 14,3 |
          1278 | 61 | 12 |
          1279 | 61,3 | 34,2 |
          1280 | 61,2 | 17,1 |
          1281 | 61,5 | 15,7 |
          1282 | 61 | 9,5 |
          1283 | 61,1 | 9,2 |
          1284 | 60,5 | 4,3 |
          1285 | 60,2 | 7,8 |
          1286 | 60,2 | 5,9 |
          1287 | 60,2 | 5,3 |
          1288 | 59,9 | 4,6 |
          1289 | 59,4 | 21,5 |
          1290 | 59,6 | 15,8 |
          1291 | 59,3 | 10,1 |
          1292 | 58,9 | 9,4 |
          1293 | 58,8 | 9 |
          1294 | 58,9 | 35,4 |
          1295 | 58,9 | 30,7 |
          1296 | 58,9 | 25,9 |
          1297 | 58,7 | 22,9 |
          1298 | 58,7 | 24,4 |
          1299 | 59,3 | 61 |
          1300 | 60,1 | 56 |
          1301 | 60,5 | 50,6 |
          1302 | 59,5 | 16,2 |
          1303 | 59,7 | 50 |
          1304 | 59,7 | 31,4 |
          1305 | 60,1 | 43,1 |
          1306 | 60,8 | 38,4 |
          1307 | 60,9 | 40,2 |
          1308 | 61,3 | 49,7 |
          1309 | 61,8 | 45,9 |
          1310 | 62 | 45,9 |
          1311 | 62,2 | 45,8 |
          1312 | 62,6 | 46,8 |
          1313 | 62,7 | 44,3 |
          1314 | 62,9 | 44,4 |
          1315 | 63,1 | 43,7 |
          1316 | 63,5 | 46,1 |
          1317 | 63,6 | 40,7 |
          1318 | 64,3 | 49,5 |
          1319 | 63,7 | 27 |
          1320 | 63,8 | 15 |
          1321 | 63,6 | 18,7 |
          1322 | 63,4 | 8,4 |
          1323 | 63,2 | 8,7 |
          1324 | 63,3 | 21,6 |
          1325 | 62,9 | 19,7 |
          1326 | 63 | 22,1 |
          1327 | 63,1 | 20,3 |
          1328 | 61,8 | 19,1 |
          1329 | 61,6 | 17,1 |
          1330 | 61 | 0 |
          1331 | 61,2 | 22 |
          1332 | 60,8 | 40,3 |
          1333 | 61,1 | 34,3 |
          1334 | 60,7 | 16,1 |
          1335 | 60,6 | 16,6 |
          1336 | 60,5 | 18,5 |
          1337 | 60,6 | 29,8 |
          1338 | 60,9 | 19,5 |
          1339 | 60,9 | 22,3 |
          1340 | 61,4 | 35,8 |
          1341 | 61,3 | 42,9 |
          1342 | 61,5 | 31 |
          1343 | 61,3 | 19,2 |
          1344 | 61 | 9,3 |
          1345 | 60,8 | 44,2 |
          1346 | 60,9 | 55,3 |
          1347 | 61,2 | 56 |
          1348 | 60,9 | 60,1 |
          1349 | 60,7 | 59,1 |
          1350 | 60,9 | 56,8 |
          1351 | 60,7 | 58,1 |
          1352 | 59,6 | 78,4 |
          1353 | 59,6 | 84,6 |
          1354 | 59,4 | 66,6 |
          1355 | 59,3 | 75,5 |
          1356 | 58,9 | 49,6 |
          1357 | 59,1 | 75,8 |
          1358 | 59 | 77,6 |
          1359 | 59 | 67,8 |
          1360 | 59 | 56,7 |
          1361 | 58,8 | 54,2 |
          1362 | 58,9 | 59,6 |
          1363 | 58,9 | 60,8 |
          1364 | 59,3 | 56,1 |
          1365 | 58,9 | 48,5 |
          1366 | 59,3 | 42,9 |
          1367 | 59,4 | 41,4 |
          1368 | 59,6 | 38,9 |
          1369 | 59,4 | 32,9 |
          1370 | 59,3 | 30,6 |
          1371 | 59,4 | 30 |
          1372 | 59,4 | 25,3 |
          1373 | 58,8 | 18,6 |
          1374 | 59,1 | 18 |
          1375 | 58,5 | 10,6 |
          1376 | 58,8 | 10,5 |
          1377 | 58,5 | 8,2 |
          1378 | 58,7 | 13,7 |
          1379 | 59,1 | 7,8 |
          1380 | 59,1 | 6 |
          1381 | 59,1 | 6 |
          1382 | 59,4 | 13,1 |
          1383 | 59,7 | 22,3 |
          1384 | 60,7 | 10,5 |
          1385 | 59,8 | 9,8 |
          1386 | 60,2 | 8,8 |
          1387 | 59,9 | 8,7 |
          1388 | 61 | 9,1 |
          1389 | 60,6 | 28,2 |
          1390 | 60,6 | 22 |
          1391 | 59,6 | 23,2 |
          1392 | 59,6 | 19 |
          1393 | 60,6 | 38,4 |
          1394 | 59,8 | 41,6 |
          1395 | 60 | 47,3 |
          1396 | 60,5 | 55,4 |
          1397 | 60,9 | 58,7 |
          1398 | 61,3 | 37,9 |
          1399 | 61,2 | 38,3 |
          1400 | 61,4 | 58,7 |
          1401 | 61,3 | 51,3 |
          1402 | 61,4 | 71,1 |
          1403 | 61,1 | 51 |
          1404 | 61,5 | 56,6 |
          1405 | 61 | 60,6 |
          1406 | 61,1 | 75,4 |
          1407 | 61,4 | 69,4 |
          1408 | 61,6 | 69,9 |
          1409 | 61,7 | 59,6 |
          1410 | 61,8 | 54,8 |
          1411 | 61,6 | 53,6 |
          1412 | 61,3 | 53,5 |
          1413 | 61,3 | 52,9 |
          1414 | 61,2 | 54,1 |
          1415 | 61,3 | 53,2 |
          1416 | 61,2 | 52,2 |
          1417 | 61,2 | 52,3 |
          1418 | 61 | 48 |
          1419 | 60,9 | 41,5 |
          1420 | 61 | 32,2 |
          1421 | 60,7 | 22 |
          1422 | 60,7 | 23,3 |
          1423 | 60,8 | 38,8 |
          1424 | 61 | 40,7 |
          1425 | 61 | 30,6 |
          1426 | 61,3 | 62,6 |
          1427 | 61,7 | 55,9 |
          1428 | 62,3 | 43,4 |
          1429 | 62,3 | 37,4 |
          1430 | 62,3 | 35,7 |
          1431 | 62,8 | 34,4 |
          1432 | 62,8 | 31,5 |
          1433 | 62,9 | 31,7 |
          1434 | 62,9 | 29,9 |
          1435 | 62,8 | 29,4 |
          1436 | 62,7 | 28,7 |
          1437 | 61,5 | 14,7 |
          1438 | 61,9 | 17,2 |
          1439 | 61,5 | 6,1 |
          1440 | 61 | 9,9 |
          1441 | 60,9 | 4,8 |
          1442 | 60,6 | 11,1 |
          1443 | 60,3 | 6,9 |
          1444 | 60,8 | 7 |
          1445 | 60,2 | 9,2 |
          1446 | 60,5 | 21,7 |
          1447 | 60,2 | 22,4 |
          1448 | 60,7 | 31,6 |
          1449 | 60,9 | 28,9 |
          1450 | 59,6 | 21,7 |
          1451 | 60,2 | 18 |
          1452 | 59,5 | 16,7 |
          1453 | 59,8 | 15,7 |
          1454 | 59,6 | 15,7 |
          1455 | 59,3 | 15,7 |
          1456 | 59 | 7,5 |
          1457 | 58,8 | 7,1 |
          1458 | 58,7 | 16,5 |
          1459 | 59,2 | 50,7 |
          1460 | 59,7 | 60,2 |
          1461 | 60,4 | 44 |
          1462 | 60,2 | 35,3 |
          1463 | 60,4 | 17,1 |
          1464 | 59,9 | 13,5 |
          1465 | 59,9 | 12,8 |
          1466 | 59,6 | 14,8 |
          1467 | 59,4 | 15,9 |
          1468 | 59,4 | 22 |
          1469 | 60,4 | 38,4 |
          1470 | 59,5 | 38,8 |
          1471 | 59,3 | 31,9 |
          1472 | 60,9 | 40,8 |
          1473 | 60,7 | 39 |
          1474 | 60,9 | 30,1 |
          1475 | 61 | 29,3 |
          1476 | 60,6 | 28,4 |
          1477 | 60,9 | 36,3 |
          1478 | 60,8 | 30,5 |
          1479 | 60,7 | 26,7 |
          1480 | 60,1 | 4,7 |
          1481 | 59,9 | 0 |
          1482 | 60,4 | 36,2 |
          1483 | 60,7 | 32,5 |
          1484 | 59,9 | 3,1 |
          1485 | 59,7 | "m" |
          1486 | 59,5 | "m" |
          1487 | 59,2 | "m" |
          1488 | 58,8 | 0,6 |
          1489 | 58,7 | "m" |
          1490 | 58,7 | "m" |
          1491 | 57,9 | "m" |
          1492 | 58,2 | "m" |
          1493 | 57,6 | "m" |
          1494 | 58,3 | 9,5 |
          1495 | 57,2 | 6 |
          1496 | 57,4 | 27,3 |
          1497 | 58,3 | 59,9 |
          1498 | 58,3 | 7,3 |
          1499 | 58,8 | 21,7 |
          1500 | 58,8 | 38,9 |
          1501 | 59,4 | 26,2 |
          1502 | 59,1 | 25,5 |
          1503 | 59,1 | 26 |
          1504 | 59 | 39,1 |
          1505 | 59,5 | 52,3 |
          1506 | 59,4 | 31 |
          1507 | 59,4 | 27 |
          1508 | 59,4 | 29,8 |
          1509 | 59,4 | 23,1 |
          1510 | 58,9 | 16 |
          1511 | 59 | 31,5 |
          1512 | 58,8 | 25,9 |
          1513 | 58,9 | 40,2 |
          1514 | 58,8 | 28,4 |
          1515 | 58,9 | 38,9 |
          1516 | 59,1 | 35,3 |
          1517 | 58,8 | 30,3 |
          1518 | 59 | 19 |
          1519 | 58,7 | 3 |
          1520 | 57,9 | 0 |
          1521 | 58 | 2,4 |
          1522 | 57,1 | "m" |
          1523 | 56,7 | "m" |
          1524 | 56,7 | 5,3 |
          1525 | 56,6 | 2,1 |
          1526 | 56,8 | "m" |
          1527 | 56,3 | "m" |
          1528 | 56,3 | "m" |
          1529 | 56 | "m" |
          1530 | 56,7 | "m" |
          1531 | 56,6 | 3,8 |
          1532 | 56,9 | "m" |
          1533 | 56,9 | "m" |
          1534 | 57,4 | "m" |
          1535 | 57,4 | "m" |
          1536 | 58,3 | 13,9 |
          1537 | 58,5 | "m" |
          1538 | 59,1 | "m" |
          1539 | 59,4 | "m" |
          1540 | 59,6 | "m" |
          1541 | 59,5 | "m" |
          1542 | 59,6 | 0,5 |
          1543 | 59,3 | 9,2 |
          1544 | 59,4 | 11,2 |
          1545 | 59,1 | 26,8 |
          1546 | 59 | 11,7 |
          1547 | 58,8 | 6,4 |
          1548 | 58,7 | 5 |
          1549 | 57,5 | "m" |
          1550 | 57,4 | "m" |
          1551 | 57,1 | 1,1 |
          1552 | 57,1 | 0 |
          1553 | 57 | 4,5 |
          1554 | 57,1 | 3,7 |
          1555 | 57,3 | 3,3 |
          1556 | 57,3 | 16,8 |
          1557 | 58,2 | 29,3 |
          1558 | 58,7 | 12,5 |
          1559 | 58,3 | 12,2 |
          1560 | 58,6 | 12,7 |
          1561 | 59 | 13,6 |
          1562 | 59,8 | 21,9 |
          1563 | 59,3 | 20,9 |
          1564 | 59,7 | 19,2 |
          1565 | 60,1 | 15,9 |
          1566 | 60,7 | 16,7 |
          1567 | 60,7 | 18,1 |
          1568 | 60,7 | 40,6 |
          1569 | 60,7 | 59,7 |
          1570 | 61,1 | 66,8 |
          1571 | 61,1 | 58,8 |
          1572 | 60,8 | 64,7 |
          1573 | 60,1 | 63,6 |
          1574 | 60,7 | 83,2 |
          1575 | 60,4 | 82,2 |
          1576 | 60 | 80,5 |
          1577 | 59,9 | 78,7 |
          1578 | 60,8 | 67,9 |
          1579 | 60,4 | 57,7 |
          1580 | 60,2 | 60,6 |
          1581 | 59,6 | 72,7 |
          1582 | 59,9 | 73,6 |
          1583 | 59,8 | 74,1 |
          1584 | 59,6 | 84,6 |
          1585 | 59,4 | 76,1 |
          1586 | 60,1 | 76,9 |
          1587 | 59,5 | 84,6 |
          1588 | 59,8 | 77,5 |
          1589 | 60,6 | 67,9 |
          1590 | 59,3 | 47,3 |
          1591 | 59,3 | 43,1 |
          1592 | 59,4 | 38,3 |
          1593 | 58,7 | 38,2 |
          1594 | 58,8 | 39,2 |
          1595 | 59,1 | 67,9 |
          1596 | 59,7 | 60,5 |
          1597 | 59,5 | 32,9 |
          1598 | 59,6 | 20 |
          1599 | 59,6 | 34,4 |
          1600 | 59,4 | 23,9 |
          1601 | 59,6 | 15,7 |
          1602 | 59,9 | 41 |
          1603 | 60,5 | 26,3 |
          1604 | 59,6 | 14 |
          1605 | 59,7 | 21,2 |
          1606 | 60,9 | 19,6 |
          1607 | 60,1 | 34,3 |
          1608 | 59,9 | 27 |
          1609 | 60,8 | 25,6 |
          1610 | 60,6 | 26,3 |
          1611 | 60,9 | 26,1 |
          1612 | 61,1 | 38 |
          1613 | 61,2 | 31,6 |
          1614 | 61,4 | 30,6 |
          1615 | 61,7 | 29,6 |
          1616 | 61,5 | 28,8 |
          1617 | 61,7 | 27,8 |
          1618 | 62,2 | 20,3 |
          1619 | 61,4 | 19,6 |
          1620 | 61,8 | 19,7 |
          1621 | 61,8 | 18,7 |
          1622 | 61,6 | 17,7 |
          1623 | 61,7 | 8,7 |
          1624 | 61,7 | 1,4 |
          1625 | 61,7 | 5,9 |
          1626 | 61,2 | 8,1 |
          1627 | 61,9 | 45,8 |
          1628 | 61,4 | 31,5 |
          1629 | 61,7 | 22,3 |
          1630 | 62,4 | 21,7 |
          1631 | 62,8 | 21,9 |
          1632 | 62,2 | 22,2 |
          1633 | 62,5 | 31 |
          1634 | 62,3 | 31,3 |
          1635 | 62,6 | 31,7 |
          1636 | 62,3 | 22,8 |
          1637 | 62,7 | 12,6 |
          1638 | 62,2 | 15,2 |
          1639 | 61,9 | 32,6 |
          1640 | 62,5 | 23,1 |
          1641 | 61,7 | 19,4 |
          1642 | 61,7 | 10,8 |
          1643 | 61,6 | 10,2 |
          1644 | 61,4 | "m" |
          1645 | 60,8 | "m" |
          1646 | 60,7 | "m" |
          1647 | 61 | 12,4 |
          1648 | 60,4 | 5,3 |
          1649 | 61 | 13,1 |
          1650 | 60,7 | 29,6 |
          1651 | 60,5 | 28,9 |
          1652 | 60,8 | 27,1 |
          1653 | 61,2 | 27,3 |
          1654 | 60,9 | 20,6 |
          1655 | 61,1 | 13,9 |
          1656 | 60,7 | 13,4 |
          1657 | 61,3 | 26,1 |
          1658 | 60,9 | 23,7 |
          1659 | 61,4 | 32,1 |
          1660 | 61,7 | 33,5 |
          1661 | 61,8 | 34,1 |
          1662 | 61,7 | 17 |
          1663 | 61,7 | 2,5 |
          1664 | 61,5 | 5,9 |
          1665 | 61,3 | 14,9 |
          1666 | 61,5 | 17,2 |
          1667 | 61,1 | "m" |
          1668 | 61,4 | "m" |
          1669 | 61,4 | 8,8 |
          1670 | 61,3 | 8,8 |
          1671 | 61 | 18 |
          1672 | 61,5 | 13 |
          1673 | 61 | 3,7 |
          1674 | 60,9 | 3,1 |
          1675 | 60,9 | 4,7 |
          1676 | 60,6 | 4,1 |
          1677 | 60,6 | 6,7 |
          1678 | 60,6 | 12,8 |
          1679 | 60,7 | 11,9 |
          1680 | 60,6 | 12,4 |
          1681 | 60,1 | 12,4 |
          1682 | 60,5 | 12 |
          1683 | 60,4 | 11,8 |
          1684 | 59,9 | 12,4 |
          1685 | 59,6 | 12,4 |
          1686 | 59,6 | 9,1 |
          1687 | 59,9 | 0 |
          1688 | 59,9 | 20,4 |
          1689 | 59,8 | 4,4 |
          1690 | 59,4 | 3,1 |
          1691 | 59,5 | 26,3 |
          1692 | 59,6 | 20,1 |
          1693 | 59,4 | 35 |
          1694 | 60,9 | 22,1 |
          1695 | 60,5 | 12,2 |
          1696 | 60,1 | 11 |
          1697 | 60,1 | 8,2 |
          1698 | 60,5 | 6,7 |
          1699 | 60 | 5,1 |
          1700 | 60 | 5,1 |
          1701 | 60 | 9 |
          1702 | 60,1 | 5,7 |
          1703 | 59,9 | 8,5 |
          1704 | 59,4 | 6 |
          1705 | 59,5 | 5,5 |
          1706 | 59,5 | 14,2 |
          1707 | 59,5 | 6,2 |
          1708 | 59,4 | 10,3 |
          1709 | 59,6 | 13,8 |
          1710 | 59,5 | 13,9 |
          1711 | 60,1 | 18,9 |
          1712 | 59,4 | 13,1 |
          1713 | 59,8 | 5,4 |
          1714 | 59,9 | 2,9 |
          1715 | 60,1 | 7,1 |
          1716 | 59,6 | 12 |
          1717 | 59,6 | 4,9 |
          1718 | 59,4 | 22,7 |
          1719 | 59,6 | 22 |
          1720 | 60,1 | 17,4 |
          1721 | 60,2 | 16,6 |
          1722 | 59,4 | 28,6 |
          1723 | 60,3 | 22,4 |
          1724 | 59,9 | 20 |
          1725 | 60,2 | 18,6 |
          1726 | 60,3 | 11,9 |
          1727 | 60,4 | 11,6 |
          1728 | 60,6 | 10,6 |
          1729 | 60,8 | 16 |
          1730 | 60,9 | 17 |
          1731 | 60,9 | 16,1 |
          1732 | 60,7 | 11,4 |
          1733 | 60,9 | 11,3 |
          1734 | 61,1 | 11,2 |
          1735 | 61,1 | 25,6 |
          1736 | 61 | 14,6 |
          1737 | 61 | 10,4 |
          1738 | 60,6 | "m" |
          1739 | 60,9 | "m" |
          1740 | 60,8 | 4,8 |
          1741 | 59,9 | "m" |
          1742 | 59,8 | "m" |
          1743 | 59,1 | "m" |
          1744 | 58,8 | "m" |
          1745 | 58,8 | "m" |
          1746 | 58,2 | "m" |
          1747 | 58,5 | 14,3 |
          1748 | 57,5 | 4,4 |
          1749 | 57,9 | 0 |
          1750 | 57,8 | 20,9 |
          1751 | 58,3 | 9,2 |
          1752 | 57,8 | 8,2 |
          1753 | 57,5 | 15,3 |
          1754 | 58,4 | 38 |
          1755 | 58,1 | 15,4 |
          1756 | 58,8 | 11,8 |
          1757 | 58,3 | 8,1 |
          1758 | 58,3 | 5,5 |
          1759 | 59 | 4,1 |
          1760 | 58,2 | 4,9 |
          1761 | 57,9 | 10,1 |
          1762 | 58,5 | 7,5 |
          1763 | 57,4 | 7 |
          1764 | 58,2 | 6,7 |
          1765 | 58,2 | 6,6 |
          1766 | 57,3 | 17,3 |
          1767 | 58 | 11,4 |
          1768 | 57,5 | 47,4 |
          1769 | 57,4 | 28,8 |
          1770 | 58,8 | 24,3 |
          1771 | 57,7 | 25,5 |
          1772 | 58,4 | 35,5 |
          1773 | 58,4 | 29,3 |
          1774 | 59 | 33,8 |
          1775 | 59 | 18,7 |
          1776 | 58,8 | 9,8 |
          1777 | 58,8 | 23,9 |
          1778 | 59,1 | 48,2 |
          1779 | 59,4 | 37,2 |
          1780 | 59,6 | 29,1 |
          1781 | 50 | 25 |
          1782 | 40 | 20 |
          1783 | 30 | 15 |
          1784 | 20 | 10 |
          1785 | 10 | 5 |
          1786 | 0 | 0 |
          1787 | 0 | 0 |
          1788 | 0 | 0 |
          1789 | 0 | 0 |
          1790 | 0 | 0 |
          1791 | 0 | 0 |
          1792 | 0 | 0 |
          1793 | 0 | 0 |
          1794 | 0 | 0 |
          1795 | 0 | 0 |
          1796 | 0 | 0 |
          1797 | 0 | 0 |
          1798 | 0 | 0 |
          1799 | 0 | 0 |
          1800 | 0 | 0 |
          Plán zkoušky ETC na dynamometru je graficky znázorněn na obrázku 5.
          Obrázek 5
          Plán průběhu zkoušky ETC na dynamometru
          +++++ TIFF +++++
          --------------------------------------------------
          Dodatek 4
          POSTUPY MĚŘENÍ A ODBĚRU VZORKŮ
          1. ÚVOD
          Plynné složky, částice a kouř emitované z motoru předaného ke zkouškám se měří metodami popsanými v příloze V. Odpovídající body přílohy V popisují doporučené systémy analýzy plynných emisí (bod 1), doporučené systémy ředění a odběru částic (bod 2) a doporučené opacimetry k měření kouře (bod 3).
          U zkoušky ESC se určují plynné složky v surovém výfukovém plynu. Volitelně se mohou určovat ve zředěném výfukovém plynu, jestliže se k určení částic použije systém ředění plného toku. Částice se určí buď systémem ředění části toku, nebo systémem ředění plného toku.
          U zkoušky ETC se musí použít k určení plynných emisí a emisí částic jen systém s ředěním plného toku, který se pokládá za referenční systém. Technická zkušebna však může schválit systémy s ředěním části toku, jestliže se prokázala jejich rovnocennost podle bodu 6.2 přílohy I a jestliže technické zkušebně byly předloženy podrobný popis vyhodnocení dat a postupy výpočtu.
          2. DYNAMOMETR A VYBAVENÍ ZKUŠEBNÍ KOMORY
          Ke zkouškám emisí z motorů na dynamometrech pro zkoušky motorů se musí použít následující zařízení.
          2.1 Dynamometr pro zkoušky motorů
          Musí se použít dynamometr pro zkoušky motorů, který má odpovídající vlastnosti, aby na něm bylo možno vykonat zkušební cykly popsané v dodatcích 1 a 2 k této příloze. Systém k měření otáček musí mít přesnost ± 2 % udávaných hodnot. Systém k měření točivého momentu musí mít přesnost ± 3 % udávaných hodnot pro rozmezí údajů > 20 % plného rozsahu stupnice a přesnost ± 0,6 % plného rozsahu stupnice pro rozmezí údajů ≤ 20 % plného rozsahu stupnice.
          2.2 Ostatní přístroje
          Užité přístroje k měření spotřeby paliva, spotřeby vzduchu, teploty chladiva a maziva, tlaku výfukového plynu a podtlaku v sacím potrubí, teploty výfukového plynu, teploty nasávaného vzduchu, atmosférického tlaku, vlhkosti vzduchu a teploty paliva musí odpovídat požadavkům. Tyto přístroje musí splňovat požadavky uvedené v tabulce 8:
          Tabulka 8
          Přesnost měřicích přístrojů
          Měřicí přístroj | Přesnost |
          Spotřeba paliva | ± 2 % maximální hodnoty motoru |
          Spotřeba vzduchu | ± 2 % maximální hodnoty motoru |
          Teploty ≤ 600 K (327 °C) | ± 2 K v absolutní hodnotě |
          Teploty > 600 K (327 °C) | ± 1 % udávané hodnoty |
          Atmosférický tlak | ± 0,1 kPa v absolutní hodnotě |
          Tlak výfukového plynu | ± 0,2 kPa v absolutní hodnotě |
          Podtlak v sání | ± 0,05 kPa v absolutní hodnotě |
          Jiné tlaky | ± 0,1 kPa v absolutní hodnotě |
          Relativní vlhkost | ± 3 % absolut |
          Absolutní vlhkost | ± 5 % udávané hodnoty |
          2.3 Průtok výfukového plynu
          K výpočtu emisí v surovém výfukovém plynu je nutné znát průtok výfukového plynu (viz bod 4.4 dodatku 1). K určení průtoku výfukového plynu se může použít jedna z těchto metod:
          a) přímé měření průtoku výfukového plynu průtokovou clonou nebo rovnocenným měřicím systémem;
          b) měření průtoku vzduchu a průtoku paliva vhodnými měřicími systémy a výpočet průtoku výfukového plynu pomocí této rovnice:
          GEXHW = GAIRW + GFUEL (pro hmotnost ve vlhkém stavu)
          Přesnost určení průtoku výfukového plynu musí být v mezích ± 2,5 % naměřené hodnoty nebo musí být lepší.
          2.4 Průtok zředěného výfukového plynu
          K výpočtu emisí ve zředěném výfukovém plynu při použití systému s ředěním plného toku (povinného u zkoušky ETC) je nutné znát průtok zředěného výfukového plynu (viz bod 4.3 dodatku 2). Celkový hmotnostní průtok zředěného výfukového plynu (GTOTW) nebo celková hmotnost zředěného výfukového plynu za celý cyklus (MTOTW) se musí měřit zařízeními PDP nebo CFV (bod 2.3.1 přílohy V). Přesnost musí být v mezích ± 2,5 % naměřené hodnoty nebo musí být lepší a musí se určit podle bodu 2.4 dodatku 5 k příloze III.
          3. URČENÍ PLYNNÝCH SLOŽEK
          3.1 Obecné požadavky na analyzátory
          Analyzátory musí mít měřicí rozsah odpovídající přesnosti požadované k měření koncentrací složek výfukového plynu (bod 3.1.1). Doporučuje se, aby analyzátory pracovaly tak, aby měřená koncentrace byla v rozmezí od 15 % do 100 % plného rozsahu stupnice.
          Jestliže indikační systémy (počítače, zařízení k záznamu dat) mohou zajistit dostatečnou přesnost a rozlišovací schopnost pod 15 % plného rozsahu stupnice, jsou také přijatelná měření pod 15 % plného rozsahu stupnice. V tomto případě musí být provedeny doplňkové kalibrace v nejméně čtyřech nenulových bodech, které jsou rozmístěny v přibližně stejných vzdálenostech, aby byla zajištěna přesnost kalibračních křivek podle bodu 1.5.5.2 dodatku 5 k příloze III.
          Elektromagnetická kompatibilita (EMC) zařízení musí být na takové úrovni, aby se minimalizovaly přídavné chyby.
          3.1.1 Chyba měření
          Celková chyba měření včetně křížové citlivosti na jiné plyny (viz bod 1.9 dodatku 5 k příloze III) nesmí překročit ± 5 % indikované hodnoty nebo ± 3,5 % plného rozsahu stupnice, přičemž se vezme nižší z obou hodnot. U koncentrací nižších než 100 ppm nesmí chyba měření překročit ± 4 ppm.
          3.1.2 Opakovatelnost
          Opakovatelnost definovaná jako 2,5 násobek směrodatné odchylky deseti opakovaných odezev na daný kalibrační plyn nebo kalibrační plyn rozpětí nesmí být pro každý použitý měřicí rozsah nad 155 ppm (nebo ppmC) větší než ± 1 % koncentrace na plném rozsahu stupnice nebo větší než ± 2 % každého měřicího rozsahu použitého pod 155 ppm (nebo ppmC).
          3.1.3 Šum
          Odezva špička-špička analyzátoru na nulovací plyn a na kalibrační plyn v rozpětí 10 s za kteroukoli periodu nesmí překročit 2 % plného rozsahu stupnice na všech použitých rozsazích.
          3.1.4 Posun nuly
          Posun nuly za dobu jedné hodiny musí být na nejnižším používaném rozsahu menší než 2 % plného rozsahu stupnice. Odezva na nulu je definována jako střední hodnota odezvy (včetně šumu) na nulovací plyn v časovém intervalu 30 s.
          3.1.5 Posun měřicího rozpětí
          Posun měřicího rozpětí za dobu jedné hodiny musí být menší než 2 % plného rozsahu stupnice na nejnižším používaném rozsahu. Měřicí rozpětí je definováno jako rozdíl mezi odezvou na kalibrační rozpětí a odezvou na nulu. Odezva na kalibrační rozpětí je definována jako střední hodnota odezvy včetně šumu na kalibrační plyn rozpětí v časovém intervalu 30 s.
          3.2 Sušení plynu
          Volitelné zařízení pro sušení plynu musí mít minimální vliv na koncentraci měřených plynů. Požití chemických sušiček není přijatelným postupem k odstraňování vody ze vzorku.
          3.3 Analyzátory
          Principy měření, které je nutno používat, jsou popsány v bodech 3.3.1 až 3.3.4. Podrobný popis měřicích systémů je uveden v příloze V. Plyny, které je nutno měřit, se musí analyzovat dále uvedenými přístroji. Pro nelineární analyzátory je přípustné použít linearizační obvody.
          3.3.1 Analýza oxidu uhelnatého (CO)
          Analyzátor oxidu uhelnatého musí být nedisperzní s absorpcí v infračerveném pásmu (NDIR).
          3.3.2 Analýza oxidu uhličitého (CO2)
          Analyzátor oxidu uhličitého musí být nedisperzní s absorpcí v infračerveném pásmu (NDIR).
          3.3.3 Analýza uhlovodíků (HC)
          Analyzátor uhlovodíků pro vznětové motory a motory na LPG musí být druhu "vyhřívaný plamenoionizační detektor" (HFID) s detektorem, ventily, potrubím atd., vyhřívaný tak, aby se teplota plynu udržovala na hodnotě 463 K ± 10 K (190 °C ± 10 °C). V závislosti na použité metodě může být pro plynové motory na NG analyzátor uhlovodíků druhu "nevyhřívaný plamenoionizační detektor" (FID) (viz bod 1.3 přílohy V).
          3.3.4 Analýza uhlovodíků jiných než methan (NMHC) (jen pro plynové motory na NG)
          Uhlovodíky jiné než methan se určují jednou z následujících metod:
          3.3.4.1 Metoda plynové chromatografie (GC)
          Uhlovodíky jiné než methan se určují tak, že od uhlovodíků změřených podle bodu 3.3.3 se odečte methan analyzovaný plynovým chromatografem stabilizovaným při 423 K (150 °C).
          3.3.4.2 Metoda separátoru uhlovodíků jiných než methan (NMC)
          Určování frakce jiné než methan se provádí vyhřívaným NMC zapojeným v řadě se zařízením FID podle bodu 3.3.3 a odečtením methanu od uhlovodíků.
          3.3.5 Analýza oxidů dusíku (NOx)
          Analyzátor oxidů dusíku musí být druhu "chemiluminiscenční detektor" (CLD) nebo "vyhřívaný chemiluminiscenční detektor" (HCLD) s konvertorem NO2/NO, jestliže se měří suchý stav. Jestliže se měří vlhký stav, musí se použít HCLD udržovaný na teplotě nad 328 K (55 °C) za předpokladu vyhovujícího výsledku zkoušky rušivých vlivů vodní páry (viz bod 1.9.2.2 dodatek 5 k příloze III).
          3.4 Odběr vzorků plynných emisí
          3.4.1 Surový výfukový plyn (jen u zkoušky ESC)
          Odběrné sondy plynných emisí musí být namontovány, jestliže je to proveditelné, nejméně 0,5 m nebo trojnásobek průměru výfukového potrubí (zvolí se větší z obou hodnot) proti směru toku plynů od místa výstupu z výfukového systému a dostatečně blízko k motoru, aby se zajistila teplota výfukových plynů v sondě nejméně 343 K (70 °C).
          U víceválcového motoru s rozvětveným sběrným výfukovým potrubím musí být vstup sondy umístěn dostatečně daleko po toku plynů, aby se zajistilo, že odebíraný vzorek je reprezentativní pro střední hodnotu emisí výfuku ze všech válců. U víceválcových motorů s oddělenými větvemi sběrného potrubí, jako při uspořádání motoru do V, je přípustné odebírat vzorky individuálně z každé větve a vypočítat střední hodnotu emisí z výfuku. Mohou se použít jiné metody, které prokázaly korelaci s výše uvedenými metodami.
          Pro výpočet emisí z výfuku se musí použít celkový hmotnostní průtok výfukových plynů.
          Jestliže je motor vybaven systémem následného zpracování výfukového plynu, musí se vzorek výfukového plynu odebrat za tímto systémem po směru toku.
          3.4.2 Zředěný výfukový plyn (povinný pro zkoušku ETC, volitelný pro zkoušku ESC)
          Výfuková trubka mezi motorem a systémem s ředěním plného toku musí splňovat požadavky bodu 2.3.1 přílohy V, EP.
          Sonda (sondy) k odběru vzorků plynných emisí musí být instalována v ředicím tunelu v bodě, ve kterém je ředicí vzduch dobře promíšen s výfukovým plynem a který musí být v bezprostřední blízkosti odběrné sondy částic.
          U zkoušky ETC se vzorky mohou obecně odebírat dvěma způsoby:
          - vzorky znečišťujících látek se odebírají do vaku k jímání vzorků v průběhu celého cyklu a změří se po ukončení zkoušky
          - vzorky znečišťujících látek se odebírají kontinuálně a integrují se za celý cyklus; tato metoda je povinná pro HC a NOx.
          4. URČENÍ ČÁSTIC
          Pro určení částic je nutno použít ředicí systém. Ředit je možné systémem s ředěním části toku (jen u zkoušky ESC) nebo systémem s ředěním plného toku (povinný u zkoušky ETC). Průtok ředicím systémem musí být dostatečně velký, aby se zcela vyloučila kondenzace vody v ředicím i odběrném systému a aby se teplota zředěného výfukového plynu udržovala na hodnotě 325 K (52 °C) nebo pod touto hodnotou bezprostředně před nosiči filtrů. Vysušení ředicího vzduchu před vstupem do ředicího systému je přípustné a je zvláště užitečné, jestliže ředicí vzduch má velkou vlhkost. Ředicí vzduch musí mít teplotu 298 K ± 5 K (25 °C ± 5 °C). Jestliže okolní teplota je nižší než 293 K (20 °C), doporučuje se předehřát ředicí vzduch nad horní mez teploty 303 K (30 °C). Teplota ředicího vzduchu před zavedením výfukových plynů do ředicího tunelu však nesmí překročit 325 K (52 °C).
          Systém s ředěním části toku musí být konstruován tak, aby dělil proud výfukových plynů na dva díly, menší z nich se ředí vzduchem a následně se použije k měření částic. K tomuto účelu je podstatné, aby byl ředicí poměr určen velmi přesně. Je možné použít různé metody k dělení toku, přičemž druh použitého dělení významným způsobem určuje, jaké odběrné zařízení a postupy musí být použity (bod 2.2 přílohy V). Odběrná sonda částic musí být namontována v bezprostřední blízkosti odběrné sondy plynných emisí a montáž musí splňovat bod 3.4.1.
          K určení hmotnosti částic jsou nutné: systém k odběru vzorků částic, filtry k odběru vzorků částic, mikrogramové váhy a vážicí komora s řízenou teplotou a vlhkostí.
          K odběru vzorků částic se musí použít metoda jediného filtru, která pracuje s jednou dvojicí filtrů (viz bod 4.1.3) v průběhu celého zkušebního cyklu. U zkoušky ESC se musí věnovat velká pozornost dobám odběru vzorků a průtokům v průběhu fáze zkoušky, v které se odebírají vzorky.
          4.1 Filtry k odběru vzorků částic
          4.1.1 Požadavky na filtry
          Požadují se filtry ze skelných vláken pokrytých fluorkarbonem nebo z fluorkarbonových membrán. Všechny druhy filtrů musí mít účinnost zachycování 0,3 μm DOP (dioktylftalátů) nejméně 95 % při rychlosti, kterou plyn proudí na filtr, mezi 35 a 80 cm/s.
          4.1.2 Velikost filtrů
          Filtry částic musí mít průměr nejméně 47 mm (účinný průměr 37 mm). Přípustné jsou filtry větších průměrů (bod 4.1.5).
          4.1.3 Primární a koncové filtry
          Zředěný výfukový plyn se v průběhu sledu zkoušky odebírá dvojicí filtrů umístěných za sebou (jeden primární filtr a jeden koncový filtr). Koncový filtr musí být umístěn nejvýše 100 mm za primárním filtrem a nesmí se ho dotýkat. Filtry mohou být váženy jednotlivě nebo jako dvojice s činnými stranami obrácenými k sobě.
          4.1.4 Rychlost, kterou proudí plyn na filtr
          Musí se dosáhnout takové rychlosti, aby plyn proudil na filtr a filtrem rychlostí od 35 do 80 cm/s. Zvýšení poklesu tlaku mezi začátkem a koncem zkoušky nesmí překročit 25 kPa.
          4.1.5 Zatížení filtrů
          Doporučené zatížení filtru na jeho činné části musí být nejméně 0,5 mg/1075 mm2. Tyto hodnoty jsou pro nejobvyklejší velikosti filtrů uvedeny v tabulce 9.
          Tabulka 9
          Doporučená zatížení filtrů
          Průměr filtru(mm) | Doporučený průměr činné plochy | Doporučené minimální zatížení filtru |
          (mm) | (mm) | (mg) |
          47 | 37 | 0,5 |
          70 | 60 | 1,3 |
          90 | 80 | 2,3 |
          110 | 100 | 3,6 |
          4.2 Požadavky na vážicí komory a analytické váhy
          4.2.1 Podmínky pro vážicí komoru
          Teplota v komoře (nebo místnosti), ve které se filtry částic stabilizují a váží, se musí v celé době stabilizování a vážení udržovat na hodnotě 295 K ± 3 K (22 °C ± 3 °C). Vlhkost se musí udržovat na rosném bodu 282,5 K ± 3 K (9,5 °C ± 3 °C) a na relativní vlhkosti 45 % ± 8 %.
          4.2.2 Vážení referenčního filtru
          Prostředí komory (nebo místnosti) musí být prosté jakéhokoli okolního znečištění (jako je prach), které by se mohlo usazovat na filtrech částic v průběhu jejich stabilizace. Odchylky od požadavků na vážicí komory uvedených v bodě 4.2.1 jsou přípustné, jestliže doba trvání odchylek nepřekročí 30 minut. Vážicí místnost musí splňovat požadavky před vstupem obsluhy. Nejméně dva nepoužité referenční filtry nebo dvojice referenčních filtrů musí být zváženy pokud možno současně s vážením filtrů (dvojice) pro odběr vzorků, avšak nejpozději čtyři hodiny po vážení těchto filtrů. Filtry musí mít stejnou velikost a být z téhož materiálu jako filtry pro odběr vzorků.
          Jestliže se střední hmotnost referenčních filtrů (dvojic referenčních filtrů) mezi váženími filtrů pro odběr vzorků změní o více než ±5 % (±7,5 % u dvojice filtrů) doporučeného minimálního zatížení filtrů (bod 4.1.5), musí se všechny filtry pro odběr vzorků vyřadit a zkouška emisí se musí opakovat.
          Jestliže nejsou splněna kritéria stability vážicí komory uvedená v bodě 4.2.1, avšak vážení referenčních filtrů (dvojic) splňují výše uvedená kritéria, má výrobce motoru možnost volby buď souhlasit se zjištěnými hmotnostmi filtrů se vzorky, nebo požadovat prohlášení zkoušek za neplatné; ve druhém případě je nutné seřízení řídicího systému vážicí místnosti a opakování zkoušky.
          4.2.3 Analytické váhy
          Analytické váhy k určení hmotností všech filtrů musí mít přesnost (směrodatnou odchylku) 20 μg a rozlišovací schopnost 10 μg (jednotka stupnice = 10 μg). U filtrů s průměrem menším než 70 mm musí být přesnost 2 μg a rozlišovací schopnost 1 μg.
          4.3 Doplňkové požadavky pro měření částic
          Všechny části ředicího systému a systému odběru vzorků z výfukového potrubí až po nosič filtru, které jsou ve styku se surovým a se zředěným výfukovým plynem, musí být konstruovány tak, aby úsady nebo změny vlastností částic byly co nejmenší. Všechny části musí být vyrobeny z elektricky vodivých materiálů, které nereagují se složkami výfukového plynu, a musí být elektricky zemněny, aby se zabránilo elektrostatickým účinkům.
          5. URČENÍ KOUŘE
          Tento bod stanoví požadavky na požadované a volitelné zkušební zařízení, které se použije pro zkoušku ELR. Kouř se musí měřit opacimetrem, který má zařízení k indikaci kouře a koeficientu absorpce světla. Režim indikace opacity se smí používat jen pro kalibrování a kontrolu opacimetru. Hodnoty kouře ve zkušebním cyklu se musí měřit v režimu indikace koeficientu absorpce světla.
          5.1 Obecné požadavky
          U zkoušky ELR se požaduje použití systému k měření kouře a zpracování dat, který obsahuje tři funkční jednotky. Tyto jednotky mohou být sloučeny v jediné konstrukční části nebo mohou být systémem mezi sebou spojených konstrukčních částí. Tyto funkční jednotky jsou:
          - opacimetr splňující požadavky bodu 3 přílohy V,
          - jednotka ke zpracování dat, která je schopna vykonávat funkce popsané v bodě 6 dodatku 1 k příloze III,
          - registrační přístroj nebo elektronické zařízení k ukládání dat, které zaznamenávají a dávají na výstupu hodnoty kouře uvedené v bodě 6.3 dodatku 1 k příloze III.
          5.2 Zvláštní požadavky
          5.2.1 Linearita
          Linearita musí být v rozmezí ± 2 % opacity.
          5.2.2 Posun nuly
          Posun nuly v průběhu jedné hodiny nesmí překročit ± 1 % opacity.
          5.2.3 Indikace a rozsah opacimetru
          Indikace opacity musí mít rozsah 0–100 % opacity a rozlišitelnost 0,1 % opacity. Indikace koeficientu absorpce světla musí mít rozsah 0–30 m-1 koeficientu absorpce světla a rozlišitelnost 0,01 m-1 koeficientu absorpce světla.
          5.2.4 Doba odezvy přístrojů
          Doba fyzikální odezvy opacimetru nesmí překročit 0,2 s. Doba fyzikální odezvy je časový rozdíl mezi okamžiky, kdy výstup snímače s rychlou odezvou dosáhne 10 % a 90 % plné výchylky indikátoru, když se opacita měřeného plynu změní za dobu kratší než 0,1 s.
          Doba elektrické odezvy opacimetru nesmí překročit 0,05 s. Doba elektrické odezvy je časový rozdíl mezi okamžiky, kdy výstup opacimetru dosáhne 10 % a 90 % plné výchylky indikátoru, když se zdroj světla přeruší nebo úplně zhasne za dobu kratší než 0,01 s.
          5.2.5 Neutrální filtry
          Každý neutrální filtr použitý ke kalibrování opacimetru, k měřením linearity nebo k nastavování měřicího rozsahu musí mít svou hodnotu známou s přesností 1 % opacity. Přesnost jmenovité hodnoty filtru se musí kontrolovat nejméně jednou ročně s použitím referenčního filtru splňujícího vnitrostátní nebo mezinárodní normu.
          Neutrální filtry jsou přesná zařízení a mohou se při používání snadno poškodit. Mělo by se s nimi co nejméně manipulovat, a pokud je to nezbytné, mělo by se tak dít s opatrností, aby nedošlo k poškrábání nebo znečištění filtru.
          --------------------------------------------------
          Dodatek 5
          POSTUP KALIBRACE
          1. KALIBRACE ANALYTICKÝCH PŘÍSTROJŮ
          1.1 Úvod
          Každý analyzátor se musí kalibrovat tak často, jak je nutné, aby splňoval požadavky na přesnost podle této směrnice. V tomto bodu je popsána metoda kalibrace pro analyzátory uvedené v bodě 3 dodatku 4 k příloze III a v bodě 1 přílohy V.
          1.2 Kalibrační plyny
          Musí se respektovat doba trvanlivosti kalibračních plynů.
          Musí se zaznamenat datum konce záruční lhůty kalibračních plynů podle údaje výrobce.
          1.2.1 Čisté plyny
          Požadovaná čistota plynů je definována mezními hodnotami znečištění, které jsou uvedeny níže. K dispozici musí být tyto plyny:
          čištěný dusík
          (znečištění ≤ 1 ppm C1, ≤ 1 ppm CO, ≤ 400 ppm CO2, ≤ 0,1 ppm NO)
          čištěný kyslík
          (čistota > 99,5 obj. % O2)
          směs vodíku s heliem
          (40 % ± 2 % vodíku, zbytek helium)
          (znečištění ≤ 1 ppm C1, ≤ 400 ppm CO2)
          čištěný syntetický vzduch
          (znečištění ≤ 1 ppm C1, ≤ 1 ppm CO, ≤ 400 ppm CO2, ≤ 0,1 ppm NO)
          (obsah kyslíku mezi 18 % a 21 % obj.)
          čištěný propan nebo CO k přezkoušení CVS.
          1.2.2 Kalibrační plyny a kalibrační plyny rozpětí
          K dispozici musí být směsi plynů s tímto chemickým složením:
          C3H8 a čištěný syntetický vzduch (viz bod 1.2.1);
          CO a čištěný dusík;
          NOx a čištěný dusík (množství NO2 obsažené v tomto kalibračním plynu nesmí překračovat 5 % obsahu NO);
          CO2 a čištěný dusík;
          CH4 a čištěný syntetický vzduch;
          C2H6 a čištěný syntetický vzduch.
          Poznámka:
          Přípustné jsou jiné kombinace plynů za předpokladu, že vzájemně nereagují.
          Skutečná koncentrace kalibračního plynu a kalibračního plynu rozpětí se smí lišit od jmenovité hodnoty v rozmezí ± 2 %. Všechny koncentrace kalibračního plynu se musí udávat v objemových jednotkách (objemové % nebo objemové ppm).
          Plyny použité ke kalibraci a ke kalibraci rozpětí se mohou také získat použitím oddělovače plynů a ředěním čištěným N2 nebo čištěným syntetickým vzduchem. Přesnost směšovacího zařízení musí být taková, aby koncentrace zředěných kalibračních plynů mohly být určeny s přesností ± 2 %.
          1.3 Postup práce s analyzátory a systém k odběru vzorků
          Postup práce s analyzátory musí sledovat instrukce výrobce přístrojů pro jejich uvádění do provozu a používání. Musí se také dodržovat minimální požadavky uvedené v bodech 1.4 až 1.9.
          1.4 Zkouška těsnosti
          Musí se přezkoušet těsnost systému. Sonda se odpojí od výfukového systému a uzavře se její konec. Pak se uvede do chodu čerpadlo analyzátoru. Po počáteční periodě stabilizace musí všechny průtokoměry ukazovat nulu. V opačném případě je třeba zkontrolovat odběrná potrubí a odstranit závadu.
          Maximální přípustná netěsnost na straně podtlaku musí byt 0,5 % skutečného průtoku v provozu v části systému, který je zkoušen. Ke stanovení skutečných průtoků v provozu je možné použít průtoky analyzátorem a průtoky obtokem.
          Jinou metodou je zavedení skokové změny koncentrace na začátku odběrného potrubí přepnutím z nulovacího plynu na kalibrační plyn rozpětí. Jestliže je po přiměřené době indikována nižší koncentrace, než je zavedená koncentrace, svědčí to o problémech s kalibrací nebo s těsností.
          1.5 Postup kalibrace
          1.5.1 Sestava přístrojů
          Sestava přístrojů se musí kalibrovat a kalibrační křivky se musí ověřit ve vztahu ke kalibračním plynům. Musí se použít tytéž průtoky plynu, jako když se odebírají vzorky výfukových plynů.
          1.5.2 Doba ohřívání
          Doba ohřívání musí odpovídat doporučení výrobce. Pokud tato doba není uvedena, doporučuje se k ohřívání analyzátorů doba nejméně dvou hodin.
          1.5.3 Analyzátory NDIR a HFID
          Je-li to třeba, seřídí se analyzátor NDIR, a optimalizuje se plamen u analyzátoru HFID (bod 1.8.1).
          1.5.4 Kalibrace
          Každý běžně používaný rozsah se musí kalibrovat.
          Analyzátory CO, CO2, NOx, a HC se musí nastavit na nulu s použitím čištěného syntetického vzduchu (nebo dusíku).
          Do analyzátorů se zavedou odpovídající kalibrační plyny, zaznamenají se hodnoty a stanoví se kalibrační křivka podle bodu 1.5.5.
          Zkontroluje se nastavení nuly, a pokud je to potřebné, postup kalibrace se opakuje.
          1.5.5 Stanovení kalibrační křivky
          1.5.5.1 Obecné pokyny
          Kalibrační křivka analyzátoru se stanoví nejméně v pěti bodech kalibrace (kromě nuly), jejichž rozložení musí být co nejrovnoměrnější. Nejvyšší jmenovitá koncentrace musí být rovna nejméně 90 % plného rozsahu stupnice.
          Kalibrační křivka se vypočte metodou nejmenších čtverců. Pokud je výsledný stupeň polynomu větší než 3, musí být počet kalibračních bodů (včetně nuly) roven nejméně stupni tohoto polynomu plus 2.
          Kalibrační křivka se smí odchylovat nejvýše o ± 2 % od jmenovité hodnoty každého kalibračního bodu a v nule nejvýše o ± 1 % plného rozsahu stupnice.
          Z průběhu kalibrační křivky a z kalibračních bodů lze ověřit, že kalibrace byla provedena správně. Je třeba zaznamenat různé charakteristické parametry analyzátoru, zvláště:
          - měřicí rozsah,
          - citlivost,
          - datum kalibrace.
          1.5.5.2 Kalibrace pod hodnotou 15 % plného rozsahu stupnice
          Kalibrační křivka analyzátoru se stanoví s použitím nejméně čtyř doplňkových kalibračních bodů (s vyloučením nuly), které jsou rozmístěny jmenovitě stejnoměrně pod hodnotou 15 % plného rozsahu stupnice.
          Kalibrační křivka se vypočte metodou nejmenších čtverců.
          Kalibrační křivka se smí lišit od jmenovitých hodnot každého kalibračního bodu nejvýše o ± 4 % a v nule nejvýše o ± 1 % plného rozsahu stupnice.
          1.5.5.3 Alternativní metody
          Jestliže se prokáže, že rovnocennou přesnost může zajistit alternativní metoda (např. počítač, elektronicky ovládaný přepínač rozsahů atd.), mohou se tyto alternativní metody použít.
          1.6 Ověření kalibrace
          Každý běžně používaný pracovní rozsah se musí před každou analýzou ověřit následujícím postupem.
          Kalibrace se ověřuje použitím nulovacího plynu a kalibračního plynu rozpětí, jehož jmenovitá hodnota je vyšší než 80 % plné hodnoty měřicího rozsahu stupnice.
          Jestliže se pro dva uvažované body liší zjištěná hodnota od deklarované referenční hodnoty nejvýše o + 4 % plného rozsahu stupnice, je možno změnit parametry seřízení. Pokud tomu tak není, musí se vytvořit nová kalibrační křivka podle bodu 1.5.5.
          1.7 Zkouška účinnosti konvertoru NOx
          Účinnost konvertoru používaného ke konverzi NO2 na NO se musí zkoušet podle bodů 1.7.1 až 1.7.8 (obrázek 6).
          1.7.1 Zkušební sestava
          Účinnost konvertorů lze kontrolovat ozonizátorem s použitím zkušební sestavy podle obrázku 6 (viz také bod 3.3.5 dodatku 4 k příloze III) a dále popsaným postupem.
          1.7.2 Kalibrace
          Detektory CLD a HCLD se kalibrují v nejčastěji používaném rozsahu nulovacím plynem a kalibračním plynem rozpětí podle instrukcí výrobce (kalibrační plyn rozpětí musí mít obsah NO, který odpovídá asi 80 % pracovního rozsahu, a koncentrace NO2 ve směsi plynů musí být nižší než 5 % koncentrace NO). Analyzátor NOx je nastaven na režim NO tak, aby kalibrační plyn rozpětí neprocházel konvertorem. Zaznamená se indikovaná koncentrace.
          1.7.3 Výpočet
          Účinnost konvertoru NOx se vypočte takto:
          účinnost % = 1 + a - bc - d × 100
          kde:
          a = je koncentrace NOx podle bodu 1.7.6
          b = je koncentrace NOx podle bodu 1.7.7
          c = je koncentrace NO podle bodu 1.7.4
          d = je koncentrace NO podle bodu 1.7.5
          1.7.4 Přidávání kyslíku
          Přípojkou T se do proudu plynu kontinuálně přidává kyslík nebo nulovací vzduch, dokud není indikovaná koncentrace asi o 20 % nižší než indikovaná kalibrační koncentrace podle bodu 1.7.2. (Analyzátor je v režimu NO.) Zaznamená se indikovaná koncentrace c. Ozonizátor zůstává během celé této operace mimo činnost.
          1.7.5 Uvedení ozonizátoru do činnosti
          Ozonizátor se nyní uvede do činnosti, aby vyráběl dostatek ozonu ke snížení koncentrace NO na 20 % (nejméně 10 %) kalibrační koncentrace uvedené v bodě 1.7.2. Zaznamená se indikovaná koncentrace d. (Analyzátor je v režimu NO).
          1.7.6 Režim NOx
          Analyzátor se pak přepne do režimu NOx, aby směs plynů (skládající se z NO, NO2, O2 a N2) nyní procházela konvertorem. Zaznamená se indikovaná koncentrace a. (Analyzátor je v režimu NOx.)
          1.7.7 Odstavení ozonizátoru z činnosti
          Ozonizátor se nyní odstaví z činnosti. Směs plynů definovaná v bodě 1.7.6 prochází konvertorem do detektoru. Zaznamená se indikovaná koncentrace b. (Analyzátor je v režimu NOx.)
          1.7.8 Režim NO
          Přepnutím do režimu NO při ozonizátoru odstaveném z činnosti se také uzavře průtok kyslíku nebo syntetického vzduchu. Údaj NOx na analyzátoru se nesmí lišit o více než ± 5 % od změřené hodnoty podle bodu 1.7.2. (Analyzátor je v režimu NO.)
          1.7.9 Interval zkoušek
          Účinnost konvertoru se musí přezkoušet před každou kalibrací analyzátoru NOx.
          1.7.10 Požadavek na účinnost
          Účinnost konvertoru nesmí být menší než 90 %, doporučuje se však důrazně, aby účinnost byla větší než 95 %.
          Poznámka: Jestliže s analyzátorem nastaveným na nejčastěji používaný rozsah nemůže ozonizátor dosáhnout snížení z 80 % na 20 % podle bodu 1.7.5, použije se nejvyšší rozsah, kterým se dosáhne takového snížení.
          Obrázek 6
          Schéma zařízení k určení účinnosti konvertoru NOx
          +++++ TIFF +++++
          1.8 Seřízení FID
          1.8.1 Optimalizace odezvy detektoru
          Analyzátor FID musí být seřízen podle pokynů výrobce přístroje. Pro optimalizaci odezvy v nejobvyklejším pracovním rozsahu se použije kalibrační plyn rozpětí ze směsi propanu se vzduchem.
          Do analyzátoru se při průtocích paliva a vzduchu nastavených podle doporučení výrobce zavede kalibrační plyn rozpětí s (350 ± 75) ppm C. Odezva se při daném průtoku paliva určí z rozdílu mezi odezvou na kalibrační plyn rozpětí a odezvou na nulovací plyn. Průtok paliva se postupně seřídí nad hodnotu uvedenou výrobcem a pod tuto hodnotu. Při těchto průtocích paliva se zaznamená odezva na kalibrační plyn rozpětí a na nulovací plyn. Rozdíl mezi odezvou na kalibrační plyn rozpětí a nulovací plyn se vynese jako křivka a průtok paliva se seřídí ke straně křivky s bohatou směsí.
          1.8.2 Faktory odezvy na uhlovodíky
          Analyzátor se kalibruje směsí propanu se vzduchem a čištěným syntetickým vzduchem podle bodu 1.5.
          Faktory odezvy se určí při uvedení analyzátoru do provozu a po intervalech větší údržby. Faktor odezvy Rf pro určitý druh uhlovodíku je poměrem mezi hodnotou C1 indikovanou analyzátorem FID a koncentrací plynu v láhvi vyjádřenou v ppm C1.
          Koncentrace zkušebního plynu musí být taková, aby dávala odezvu na přibližně 80 % plného rozsahu stupnice. Koncentrace musí být známa s přesností ± 2 %, vztaženo ke gravimetrické normalizované hodnotě vyjádřené objemově. Kromě toho musí být láhev s plynem stabilizována po dobu 24 hodin při teplotě 298 K ± 5 K (25 oC ± 5 °C).
          Zkušební plyny, které se použijí, a doporučené faktory relativní odezvy jsou tyto:
          methan a čištěný syntetický vzduch: 1,00 ≤ Rf ≤ 1,15,
          propylen a čištěný syntetický vzduch: 0,90 ≤ Rf ≤ 1,10,
          toluen a čištěný syntetický vzduch: 0,90 ≤ Rf ≤ 1,10.
          Tyto hodnoty jsou vztaženy k faktoru odezvy Rf = 1,00 pro propan a čištěný syntetický vzduch.
          1.8.3 Kontrola rušivého vlivu kyslíku
          Kontrola rušivého vlivu kyslíku se provede při uvádění analyzátoru do provozu a po intervalech větší údržby.
          Faktor odezvy je definován v bodě 1.8.2 a určí se postupem uvedeným v tomto bodu. Zkušební plyn, který se použije, a relativní odezvy jsou tyto:
          propan a dusík 0,95 ≤ Rf ≤ 1,05.
          Tato hodnota je vztažena k faktoru odezvy Rf = 1,00 pro propan a čištěný syntetický vzduch.
          Koncentrace kyslíku ve vzduchu hořáku FID se smí lišit od koncentrace kyslíku ve vzduchu hořáku použitého při poslední kontrole rušivého vlivu kyslíku nejvýše o ± 1 mol %. Jestliže je tento rozdíl větší, musí se rušivý vliv kyslíku zkontrolovat a analyzátor se musí v případě potřeby seřídit.
          1.8.4 Účinnost separátoru uhlovodíků jiných než methan (NMC, jen pro plynové motory na NG)
          NMC se používá k odstraňování uhlovodíků jiných než methan ze vzorku plynu tím, že se oxidují všechny uhlovodíky kromě methanu. V ideálním případě je konverze methanu 0 % a konverze ostatních uhlovodíků představovaných ethanem 100 %. K přesnému měření NMHC se určí obě účinnosti a použijí se k výpočtu hmotnostního průtoku emisí NMHC (viz bod 4.3 dodatku 2 k příloze III).
          1.8.4.1 Účinnost vztažená k methanu
          Kalibrační plyn methanu se vede detektorem FID s obtokem NMC a bez tohoto obtoku a obě koncentrace se zaznamenají. Účinnost se určí takto:
          CEM = 1 - concw/concw/o
          kde:
          concw = koncentrace HC při průtoku CH4 skrz NMC
          concw/o = koncentrace HC při obtoku CH4 mimo NMC
          1.8.4.2 Účinnost vztažená k ethanu
          Kalibrační plyn ethanu se vede skrz FID s obtokem NMC a bez tohoto obtoku a obě koncentrace se zaznamenají. Účinnost se určí takto:
          CEE = 1 - concwconcw/o
          kde:
          concw = koncentrace HC při průtoku C2H6 separátorem NMC
          concw/o = koncentrace HC při obtoku C2H6 mimo separátor NMC
          1.9 Rušivé vlivy u analyzátorů CO, CO2 a NOx
          Plyny, které jsou obsaženy ve výfukovém plynu a které nejsou analyzovanými plyny, mohou být indikované hodnoty ovlivňovány více způsoby. K pozitivnímu rušení dochází u přístrojů NDIR, když rušivý plyn má stejný účinek jako měřený plyn, avšak v menší míře. K negativnímu rušení dochází u přístrojů NDIR, když rušivý plyn rozšiřuje pásmo absorpce měřeného plynu, a v přístrojích CLD, když rušivý plyn potlačuje záření. Kontroly rušivých vlivů podle bodů 1.9.1 a 1.9.2 se musí provádět před uvedením analyzátoru do provozu a po intervalech větší údržby.
          1.9.1 Kontrola rušivých vlivů u analyzátoru CO
          Činnost analyzátoru CO může rušit voda a CO2. Proto se nechá při teplotě místnosti probublávat vodou kalibrační plyn rozpětí CO2 s koncentrací od 80 % do 100 % plného rozsahu stupnice při maximálním pracovním rozsahu používaném při zkoušce a zaznamená se odezva analyzátoru. Odezva analyzátoru smí být nejvýše 1 % plného rozsahu stupnice pro rozsahy nejméně 300 ppm a nejvýše 3 ppm pro rozsahy pod 300 ppm.
          1.9.2 Kontrola rušivých vlivů u analyzátoru NOx
          Dva plyny, kterým se musí věnovat pozornost u analyzátorů CLD (a HCLD), jsou CO2 a vodní pára. Rušivé odezvy těchto plynů jsou úměrné jejich koncentracím a vyžadují proto techniky zkoušení k určení rušivých vlivů při jejich nejvyšších koncentracích očekávaných podle zkušeností při zkouškách.
          1.9.2.1 Kontrola rušivého vlivu CO2
          Kalibrační plyn rozpětí CO2 s koncentrací od 80 % do 100 % plného rozsahu stupnice při maximálním pracovním rozsahu se nechá procházet analyzátorem NDIR a zaznamená se hodnota CO2 jako hodnota A. Tento plyn se pak ředí přibližně na 50 % kalibračním plynem rozpětí NO a nechá se procházet NDIR a (H)CLD, přičemž se hodnoty CO2 a NO zaznamenají jako hodnoty B a C. Pak se uzavře přívod CO2 a detektorem (H)CLD prochází jen kalibrační plyn rozpětí NO a hodnota NO se zaznamená jako hodnota D.
          Rušivý vliv, který nesmí být větší než 3 % plného rozsahu stupnice, se vypočte takto:
          % rušivého vlivu = 1 - C × AD × A - D × B × 100
          kde
          A = je koncentrace nezředěného CO2 měřená analyzátorem NDIR v %
          B = je koncentrace zředěného CO2 měřená analyzátorem NDIR v %
          C = je koncentrace zředěného NO měřená detektorem (H)CLD v ppm
          D = je koncentrace nezředěného NO detektorem (H)CLD v ppm
          Je možno použít jiné metody ředění a kvantitativního určení hodnot kalibračního plynu rozpětí CO2 a NO, např. dynamické směšování.
          1.9.2.2 Kontrola rušivého vlivu vodní páry
          Tato kontrola platí jen pro měření koncentrace vlhkého plynu. Výpočet rušivého vlivu vodní páry musí uvažovat ředění kalibračního plynu rozpětí NO vodní párou a úpravu koncentrace vodní páry ve směsi na hodnotu očekávanou při zkoušce.
          Kalibrační plyn rozpětí NO s koncentrací 80 % až 100 % plného rozsahu stupnice v běžném pracovním rozsahu se nechá procházet detektorem (H)CLD a zaznamená se hodnota NO jako hodnota D. Kalibrační plyn rozpětí NO se pak nechá při teplotě místnosti probublávat vodou a procházet detektorem (H)CLD a zaznamená se hodnota NO jako hodnota C. Určí se absolutní pracovní tlak analyzátoru a teplota vody a zaznamenají se jako hodnoty E a F. Určí se tlak nasycených par směsi, který odpovídá teplotě probublávané vody F, a zaznamená se jako hodnota G. Koncentrace vodní páry (H, v %) ve směsi se vypočte takto:
          H = 100 × G/E
          Očekávaná koncentrace De zředěného kalibračního plynu rozpětí NO (ve vodní páře) se vypočte takto:
          De = D × 1 - H/100
          U výfukových plynů vznětového motoru se odhadne maximální koncentrace vodní páry (Hm, v %) očekávaná při zkoušce, za předpokladu atomového poměru H/C paliva 1,8 : 1, z koncentrace nezředěného kalibračního plynu rozpětí CO2 (A, hodnota změřená podle bodu 1.9.2.1) takto:
          Hm = 0,9 × A
          Rušivý vliv vodní páry, který nesmí být větší než 3 %, se vypočte takto:
          procento rušivého vlivu = 100 × De - C/De × Hm/H
          kde:
          De = očekávaná koncentrace zředěného NO v ppm
          C = koncentrace zředěného NO v ppm
          Hm = maximální koncentrace vodní páry v %
          H = skutečná koncentrace vodní páry v %
          Poznámka: Pro tuto kontrolu je důležité, aby kalibrační plyn rozpětí NO obsahoval co nejnižší koncentraci NO2, protože při výpočtu rušivého vlivu se nebrala v úvahu absorpce NO2 ve vodě.
          1.10 Intervaly mezi kalibracemi
          Analyzátory se musí kalibrovat podle bodu 1.5 nejméně jednou za tři měsíce nebo vždy, když se provedou na systému opravy nebo změny, které by mohly ovlivnit kalibraci.
          2. KALIBRACE SYSTÉMU CVS
          2.1 Obecně
          Systém CVS se musí kalibrovat přesným průtokoměrem, který splňuje vnitrostátní nebo mezinárodní normy, a zařízením škrtícím průtok. Průtok systémem se měří při různých nastaveních škrcení a měří se řídicí parametry systému a určuje se jejich vztah k průtoku.
          Mohou se použít různé typy průtokoměrů, např. kalibrovaná Venturiho trubice, kalibrovaný laminární průtokoměr, kalibrovaný turbinový průtokoměr.
          2.2 Kalibrace objemového dávkovacího čerpadla (PDP)
          Všechny parametry čerpadla se musí měřit současně s parametry průtokoměru, který je zapojen v sérii s čerpadlem. Nakreslí se křivka závislosti vypočteného průtoku (v m3/min na vstupu čerpadla při absolutním tlaku a absolutní teplotě) na korelační funkci, která je hodnotou specifické kombinace parametrů čerpadla. Pak se sestaví lineární rovnice vztahu mezi průtokem čerpadla a korelační funkcí. Jestliže systém CVS má pohon s více rychlostmi, provede se kalibrace pro každou použitou rychlost. V průběhu kalibrace se musí udržovat stabilní teplota.
          2.2.1 Analýza údajů
          Průtok vzduchu Qs při každém nastavení škrcení (nejméně 6 nastavení) se vypočte v m3/min z údajů průtokoměru s použitím metody předepsané výrobcem. Pak se průtok vzduchu přepočte na průtok čerpadla V0 v m3/ot při absolutní teplotě a absolutním tlaku na vstupu čerpadla takto:
          V0 = Qsn × T273 × 101,3pA
          kde:
          Qs = průtok vzduchu při běžných podmínkách (101,3 kPa, 273 K), m3/s
          T = teplota na vstupu čerpadla, K
          pA = absolutní tlak na vstupu čerpadla (pB - p1), kPa
          n = otáčky čerpadla, ot/s
          Aby se vzalo v úvahu vzájemné ovlivňování kolísání tlaku v čerpadle a míra ztrát v čerpadle, vypočte se korelační funkce X0 mezi otáčkami čerpadla, rozdílem tlaku mezi vstupem a výstupem čerpadla a absolutním tlakem na výstupu čerpadla takto:
          X0 = 1n × ΔpppA
          kde:
          Δpp = rozdíl tlaku mezi vstupem a výstupem čerpadla, kPa
          pA = absolutní tlak na výstupu čerpadla, kPa
          Lineární úpravou metodou nejmenších čtverců se odvodí tato kalibrační rovnice:
          V0 = D0 - m × X0
          D0 a m jsou konstanty úseku na ose souřadnic a sklonu, tyto konstanty popisují regresní přímky.
          U systému CVS s více rychlostmi musí být kalibrační křivky sestrojené pro různé rozsahy průtoku čerpadla přibližně rovnoběžné a hodnoty úseku na ose souřadnic D0 se musí zvětšovat s poklesem průtoku čerpadla.
          Hodnoty vypočtené z rovnice se smějí lišit nejvýše o ± 0,5 % od změřené hodnoty V0. Hodnoty m se mění od jednoho čerpadla k druhému. Přítok částic způsobí v průběhu času zmenšování míry ztrát v čerpadle, což se odráží v menších hodnotách m. Proto se kalibrace musí provést při uvedení čerpadla do provozu, po větší údržbě, a jestliže ověření celého systému (bod 2.4) ukazuje změnu míry ztrát.
          2.3 Kalibrace Venturiho trubice s kritickým prouděním (CFV)
          Kalibrace CFV vychází z rovnice průtoku pro Venturiho trubici s kritickým průtokem. Průtok plynu je touto funkcí vstupního tlaku a teploty:
          Qs = Kv × pAT
          kde:
          Kv = kalibrační koeficient
          pA = absolutní tlak na vstupu Venturiho trubice, kPa
          T = teplota na vstupu Venturiho trubice, K
          2.3.1 Analýza údajů
          Průtok vzduchu Qs při každém nastavení škrcení (nejméně 8 nastavení) se vypočte v m3/min z údajů průtokoměru s použitím metody předepsané výrobcem. Kalibrační koeficient se vypočte z kalibračních údajů pro každé nastavení takto:
          Kv = Qs × TpA
          kde:
          Qs = průtok vzduchu při běžných podmínkách (101,3 kPa, 273 K), m3/s
          T = teplota na vstupu Venturiho trubice, K
          pA = absolutní tlak na vstupu Venturiho trubice, kPa
          K určení rozsahu kritického proudění se sestrojí křivka Kv jako funkce tlaku na vstupu Venturiho trubice. Při kritickém (škrceném) průtoku má Kv poměrně konstantní hodnotu. Při poklesu tlaku (zvyšujícím se podtlaku) se průtok Venturiho trubicí uvolňuje a Kv se zmenšuje, což ukazuje, že CFV pracuje mimo přípustný rozsah.
          Pro nejméně osm bodů v oblasti kritického proudění se vypočtou střední hodnota Kv a směrodatná odchylka. Směrodatná odchylka nesmí překročit ± 0,3 % střední hodnoty Kv.
          2.4 Ověření celého systému
          Celková přesnost systému pro odběr vzorků a systému analýzy se určí zavedením známého množství znečišťujícího plynu do systému, když pracuje běžným způsobem. Znečišťující látka se analyzuje a vypočte se hmotnost podle bodu 4.3 dodatku 2 k příloze III kromě propanu, u něhož se použije faktor 0,000472 místo hodnoty 0,000479 pro HC. Použije se jeden ze dvou následujících postupů.
          2.4.1 Měření clonou pro kritické proudění
          Známé množství čistého plynu (oxid uhelnatý nebo propan) se vpustí do systému CVS kalibrovanou clonou pro kritické proudění. Jestliže tlak na vstupu je dostatečně velký, není průtok, který se seřídí clonou s kritickým prouděním, závislý na tlaku na výstupu clony (≡ kritické proudění). Systém CVS je v provozu jako při běžné zkoušce emisí z výfuku po dobu 5 až 10 minut. Vzorek plynu se analyzuje obvyklým zařízením (vak k jímání vzorků nebo metoda integrace) a vypočte se hmotnost plynu. Takto určená hmotnost se smí lišit nejvýše o ± 3 % od známé hmotnosti vpuštěného plynu.
          2.4.2 Měření gravimetrickým postupem
          S přesností ± 0,01 gramu se určí hmotnost malé láhve naplněné oxidem uhelnatým nebo propanem. Systém CVS je v provozu jako při běžné zkoušce emisí z výfuku po dobu 5 až 10 minut, přičemž se oxid uhelnatý nebo propan vpouští do systému. Množství čistého plynu, které se uvolní, se určí z hmotnostního rozdílu zjištěného vážením. Vzorek plynu se analyzuje obvyklým zařízením (vak k jímání vzorků nebo metoda integrace) a vypočte se hmotnost plynu. Takto určená hmotnost se smí lišit nejvýše o ± 3 % od známé hmotnosti vpuštěného plynu.
          3. KALIBRACE SYSTÉMU PRO MĚŘENÍ ČÁSTIC
          3.1 Úvod
          Každá část se musí kalibrovat tak často, jak je potřebné ke splnění požadavků na přesnost podle této směrnice. Metoda kalibrace, která se použije, je popsána v tomto bodu pro přístroje uvedené v bodě 4 dodatku 4 k příloze III a v bodě 2 přílohy V.
          3.2 Měření průtoku
          Kalibrace plynoměrů nebo zařízení k měření průtoku musí odpovídat mezinárodním nebo vnitrostátním normám. Maximální chyba měřené hodnoty smí být nejvýše ± 2 % indikované hodnoty.
          Jestliže se průtok plynu určuje diferenciálním měřením toku pomocí diferenciálního průtoku, smí být maximální chyba rozdílu taková, aby přesnost GEDF byla v rozmezí ± 4 % (viz také bod 2.2.1 přílohy V EGA). Tuto chybu je možné vypočítat metodou střední kvadratické odchylky chyb každého přístroje.
          3.3 Kontrola podmínek části toku
          Zkontrolují se rozsah rychlosti výfukového plynu a kolísání tlaku a v případě potřeby se seřídí podle požadavků uvedených v bodě 2.2.1 přílohy V (EP).
          3.4 Intervaly kalibrace
          Přístroje k měření průtoku se musí kalibrovat nejméně každé tři měsíce nebo vždy, když se na systému provedly opravy nebo změny, které by mohly ovlivnit kalibraci.
          4. KALIBRACE ZAŘÍZENÍ PRO MĚŘENÍ KOUŘE
          4.1 Úvod
          Opacimetr se musí kalibrovat tak často, jak je potřebné ke splnění požadavků na přesnost stanovených touto směrnicí. Metoda kalibrace, která se použije, je popsána v tomto bodu pro přístroje uvedené v bodě 5 dodatku 4 k příloze III a v bodě 3 přílohy V.
          4.2 Postup kalibrace
          4.2.1 Doba zahřátí
          Opacimetr se zahřeje a stabilizuje podle doporučení výrobce. Jestliže je opacimetr vybaven systémem proplachování vzduchem, který zamezuje úsadám na optice přístroje, měl by být tento systém také uveden do provozu a seřízen podle doporučení výrobce.
          4.2.2 Určení linearity odezvy
          Linearita opacimetru se kontroluje v režimu indikace opacity podle doporučení výrobce. Tři neutrální filtry známé propustnosti, která musí splňovat požadavky uvedené v bodě 5.2.5 dodatku 4 k příloze III, se nasadí do opacimetru a hodnota se zaznamená. Neutrální filtry musí mít jmenovité opacity přibližně 10 %, 20 % a 40 %.
          Linearita se smí lišit nejvýše o ± 2 % opacity od jmenovité hodnoty neutrálního filtru. Každá nelinearita překračující výše uvedenou hodnotu se musí před zkouškou korigovat.
          4.3 Intervaly mezi kalibracemi
          Opacimetr se musí kalibrovat podle bodu 4.2.2 nejméně jednou za každé tři měsíce nebo vždy, když se provedou na systému opravy nebo změny, které by mohly ovlivnit kalibraci.
          --------------------------------------------------
          PŘÍLOHA IV
          TECHNICKÉ VLASTNOSTI REFERENČNÍHO PALIVA PŘEDEPSANÉHO PRO SCHVALOVACÍ ZKOUŠKY A K OVĚŘOVÁNÍ SHODNOSTI VÝROBY
          1.1 Motorová nafta [1]
          Parametr | Jednotka | Mezní hodnoty [2] | Zkušební metoda | Zveřejněno |
          minimální | maximální |
          Cetanové číslo [3] | | 52,0 | 54,0 | EN-ISO 5165 | 1998 [4] |
          Hustota při 15 °C | kg/m3 | 833 | 837 | EN-ISO 3675 | 1995 |
          Destilace: | | | | | |
          — bod 50 % | °C | 245 | — | EN-ISO 3405 | 1998 |
          — bod 95 % | °C | 345 | 350 | EN-ISO 3405 | 1998 |
          — konečný bod varu | °C | — | 370 | EN-ISO 3405 | 1998 |
          Bod vzplanutí | °C | 55 | — | EN 27719 | 1993 |
          Bod ucpání filtru za studena (CFPP) | °C | — | - 5 | EN 116 | 1981 |
          Viskozita při 40 °C | mm2/s | 2,5 | 3,5 | EN-ISO 3104 | 1996 |
          Polycyklické aromatické uhlovodíky | % m/m | 3,0 | 6,0 | IP 391 [18] | 1995 |
          Obsah síry [5] | mg/kg | — | 300 | pr. EN-ISO/DIS 14596 | 1998 [4] |
          Koroze mědi | | — | 1 | EN-ISO 2160 | 1995 |
          Conradsonovo uhlíkové reziduum (v 10 % destilačním zbytku) | % m/m | — | 0,2 | EN-ISO 10370 | |
          Obsah popela | % m/m | — | 0,01 | EN-ISO 6245 | 1995 |
          Obsah vody | % m/m | — | 0,05 | EN-ISO 12937 | 1995 |
          Neutralizační číslo (číslo kyselosti) | mg KOH/g | — | 0,02 | ASTM D 974-95 | 1998 [4] |
          Oxidační stabilita [6] | mg/ml | — | 0,025 | EN-ISO 12205 | 1996 |
          [18] | % m/m | — | — | EN 12916 | [2000] [4] |
          1.2 Ethanol pro vznětové motory [7]
          Parametr | Jednotka | Mezní hodnoty [8] | Zkušební metoda [9] |
          minimální | maximální |
          Alkohol, hmotnost | % hm. | 92,4 | — | ASTM D 5501 |
          Alkohol jiný než ethanol obsažený v celkové hmotnosti alkoholu | % hm. | — | 2 | ADTM D 5501 |
          Hustota při 15 °C | kg/m3 | 795 | 815 | ASTM D 4052 |
          Obsah popela | % hm. | | 0,001 | ISO 6245 |
          Bod vzplanutí | °C | 10 | | ISO 2719 |
          Kyselost vypočtená jako kyselina octová | % hm. | — | 0,0025 | ISO 1388-2 |
          Neutralizační číslo (silná kyselina) | KOH mg/l | — | 1 | |
          Barva | podle stupnice barev | — | 10 | ASTM D 1209 |
          Suchý zbytek při 100 °C | mg/kg | | 15 | ISO 759 |
          Obsah vody | % hm. | | 6,5 | ISO 760 |
          Aldehydy vypočtené jako kyselina octová | % hm. | | 0,0025 | ISO 1388-4 |
          Obsah síry | mg/kg | — | 10 | ASTM D 5453 |
          Estery vypočtené jako etylacetát | % hm. | — | 0,1 | ASSTM D 1617 |
          2. ZEMNÍ PLYN (NG)
          Paliva na evropském trhu jsou k dispozici ve dvou skupinách:
          - skupina H, jejíž krajní hodnoty zahrnují referenční paliva GR a G23,
          - skupina L, jejíž krajní hodnoty zahrnují referenční paliva G23 a G25.
          Vlastnosti referenčních paliv GR, G23 a G25 jsou shrnuty v těchto tabulkách:
          Referenční palivo GR
          Vlastnosti | Jednotka | Základ | Mezní hodnoty | Zkušební metoda |
          minimální | maximální |
          Složení: | | | | | |
          Methan | | 87 | 84 | 89 | |
          Ethan | | 13 | 11 | 15 | |
          Zbytek [10] | % mol | — | — | 1 | ISO 6974 |
          Obsah síry | mg/m3 [11] | — | — | 10 | ISO 6326-5 |
          Referenční palivo G23
          Vlastnosti | Jednotka | Základ | Mezní hodnoty | Zkušební metoda |
          minimální | maximální |
          Složení: | | | | | |
          Methan | | 92,5 | 91,5 | 93,5 | |
          Zbytek [12] | % mol | — | — | 1 | ISO 6974 |
          N2 | | 7,5 | 6,5 | 8,5 | |
          Obsah síry | mg/m3 [13] | — | — | 10 | ISO 6326-5 |
          Referenční palivo G25
          Vlastnosti | Jednotka | Základ | Mezní hodnoty | Zkušební metoda |
          minimální | maximální |
          Složení: | | | | | |
          Methan | | 86 | 84 | 88 | |
          Zbytek [14] | % mol | — | — | 1 | ISO 6974 |
          N2 | | 14 | 12 | 16 | |
          Obsah síry | mg/m3 [15] | — | — | 10 | ISO 6326-5 |
          3. ZKAPALNĚNÝ ROPNÝ PLYN (LPG)
          Parametr | Jednotka | Mezní hodnoty paliva A | Mezní hodnoty paliva B | Zkušební metoda |
          min | max | min | max |
          Oktanové číslo podle motorové metody | | 92,5 [16] | | 92,5 | | EN 589 příloha B |
          Složení | | | | | | |
          Obsah C3 | % objem. | 48 | 52 | 83 | 87 | |
          Obsah C4 | % objem. | 48 | 52 | 13 | 17 | ISO 7941 |
          Olefiny | % objem. | | 12 | | 14 | |
          Zbytek po odpaření | mg/kg | | 50 | | 50 | NFM 41015 |
          Celkový obsah síry | ppm hm. [16] | | 50 | | 50 | EN 24260 |
          Sirovodík | — | žádný | žádný | ISO 8819 |
          Koroze proužku mědi | zařazení | třída 1 | třída 1 | ISO 6251 [17] |
          Voda při 0 °C | | žádná | žádná | vizuální kontrola |
          [1] Pokud se požaduje výpočet tepelné účinnosti motoru nebo vozidla, může se výhřevnost paliva vypočítat takto:Specifická energie (výhřevnost) (netto) MJ/kg = (46,423 - 8,792d2 + 3,170d) (1 - (x + y + s)) + 9,420s - 2,499xkde:d = hustota při 15 °Cx = hmotnostní podíl vody (%/100)y = hmotnostní podíl popela (%/100)s = hmotnostní podíl síry (%/100).
          [2] Hodnoty uvedené v požadavku jsou "skutečné hodnoty". Při stanovení jejich mezních hodnot byla použita norma ISO 4259 "Ropné výrobky – stanovení a použití přesných údajů ve vztahu ke zkušebním metodám"a při určení minimální hodnoty byl vzat v úvahu nejmenší rozdíl 2R nad nulou; při určení maximální a minimální hodnoty je minimální rozdíl 4R (R = reprodukovatelnost). Nehledě na toto opatření, které je nezbytné ze statistických důvodů, měl by se výrobce paliva snažit o dosažení hodnoty nula, je-li stanovena maximální hodnota 2R, a o dosažení střední hodnoty, je-li udána maximální a minimální mezní hodnota. Je-li třeba objasnit otázku, zda palivo splňuje požadavky, platí podmínky normy ISO 4259.
          [3] Uvedený rozsah cetanového čísla není ve shodě s požadavkem minimálního rozsahu 4R. Avšak v případech sporu mezi dodavatelem a uživatelem paliva se mohou k rozhodnutí takových sporů použít podmínky normy ISO 4259 za předpokladu, že místo jediného měření se vykonají opakovaná měření, v počtu dostatečném pro dosažení potřebné přesnosti.
          [4] Měsíc zveřejnění bude doplněn v odpovídajícím termínu.
          [5] Skutečný obsah síry v palivu použitém ke zkoušce se uvede v protokolu. Kromě toho musí maximální obsah síry v referenčním palivu použitém k schválení typu vozidla nebo motoru podle mezních hodnot uvedených v řádku B tabulky v bodě 6.2.1 přílohy I této směrnice být 50 ppm. Komise předloží co nejdříve, avšak nejpozději do 31. prosince 1999, změnu této přílohy, která vezme v úvahu průměrný obsah síry u paliv, která jsou na trhu, pokud jde o palivo uvedené v příloze IV směrnice 98/70/ES.
          [6] I když se kontroluje stálost vůči oxidaci, je pravděpodobné, že skladovatelnost je omezená. Je třeba vyžádat si od dodavatele pokyny o podmínkách skladování a životnosti.
          [18] Nová a lepší metoda pro polycyklické aromatické uhlovodíky je ve vývoji
          [7] Do ethanolového paliva je možno podle pokynů výrobce přidat přísadu, která zlepšuje cetanové číslo. Maximální přípustné množství je 10 % hmotnostních.
          [8] Hodnoty uvedené v požadavku jsou "skutečné hodnoty". Při stanovení jejich mezních hodnot byla použita norma ISO 4259 "Ropné výrobky – stanovení a použití přesných údajů ve vztahu ke zkušebním metodám" a při určení minimální hodnoty byl vzat v úvahu nejmenší rozdíl 2R nad nulou; při určení maximální a minimální hodnoty je minimální rozdíl 4R (R = reprodukovatelnost). Nehledě na toto opatření, které je nezbytné ze statistických důvodů, by se měl výrobce paliva snažit o dosažení hodnoty nula, je-li stanovena maximální hodnota 2R, a o dosažení střední hodnoty, je-li udána maximální a minimální mezní hodnota. Je-li třeba objasnit otázku, zda palivo splňuje požadavky, platí podmínky normy ISO 4259.
          [9] Budou převzaty rovnocenné metody ISO, jakmile budou vydány pro všechny výše uvedené vlastnosti.
          [10] Inertní plyny +C2+
          [11] Hodnota, která se určí pro běžné podmínky (293,2 K (20 °C) a 101,3 kPa).
          [12] Inertní plyny (jiné než N2) +C2+ +C2+.
          [13] Hodnota, která se určí pro běžné podmínky (293,2 K (20 °C) a 101,3 kPa).
          [14] Inertní plyny (jiné než N2) +C2+ +C2+.
          [15] Hodnota, která se určí pro běžné podmínky (293,2 K (20 °C) a 101,3 kPa).
          [16] Hodnota, která se určí pro běžné podmínky (293,2 K (20 °C) a 101,3 kPa).
          [17] Touto metodou se nemusí přesně určit přítomnost korodujících látek, jestliže vzorek obsahuje inhibitory koroze nebo jiné chemikálie, které zmenšují korozivní působení vzorku na proužek mědi. Proto je zakázáno přidávat takové složky jen za účelem ovlivnění zkušební metody.
          --------------------------------------------------
          PŘÍLOHA V
          ANALYTICKÉ SYSTÉMY A SYSTÉMY PRO ODBĚR VZORKŮ
          1. URČENÍ PLYNNÝCH EMISÍ
          1.1 Úvod
          Bod 1.2 a obrázky 7 a 8 obsahují podrobné popisy doporučených systémů pro odběr vzorků a doporučených analytických systémů. Protože různá uspořádání mohou dávat rovnocenné výsledky, nepožaduje se přesná shoda s obrázky 7 a 8. Pro získání dalších informací a ke koordinování funkcí dílčích systémů mohou být použity další části, jako jsou přístroje, ventily, elektromagnety, čerpadla a spínače. Jiné části, které nejsou potřebné k udržování přesnosti některých systémů, mohou být vyloučeny, jestliže se jejich vyloučení zakládá na osvědčeném technickém úsudku.
          Obrázek 7
          Schéma systému pro analýzu surového výfukového plynu pro CO, CO2, NOx a HC, platí jen pro zkoušku ESC
          +++++ TIFF +++++
          nulovací plynnulovací plynnulovací plynnulovací plynvolitelně 2 odběrné sondyodvzduš-něníodvzduš-něnívzduchpalivokalibrační plyn rozpětíodvzduš-něníodvzduš-něníodvzduš-něníkalibrační plyn rozpětínulovací plynkalibrační plyn kalibrační plyn nulovací plynodvzdušněníodvzduš-nění
          1.2 Popis analytického systému
          Popisuje se analytický systém pro určení plynných emisí v surovém (obrázek 7, pouze zkouška ESC) nebo ve zředěném (obrázek 8, zkoušky ETC a ESC) výfukovém plynu a tento systém je založen na použití:
          - analyzátoru HFID pro měření uhlovodíků,
          - analyzátorů NDIR pro měření oxidu uhelnatého a oxidu uhličitého,
          - analyzátoru HCLD nebo rovnocenného analyzátoru pro měření oxidů dusíku.
          Vzorek pro všechny složky se může odebírat jednou odběrnou sondou nebo dvěma odběrnými sondami umístěnými velmi blízko sebe a uvnitř rozdělenými k různým analyzátorům. Musí se dbát, aby nedocházelo v jakémkoli bodě analytického systému k žádné kondenzaci složek výfuku (včetně vody a kyseliny sírové).
          Obrázek 8
          Schéma systému pro analýzu zředěného výfukového plynu pro CO, CO2, NOx a HC pro zkoušku ETC a volitelně pro zkoušku ESC
          +++++ TIFF +++++
          nulovací plynk PSS viz obrázek 21nulovací plynvzduchrovina, stejnáviz obrázek 21viz obrá-zek 20kalibrační plyn rozpětípalivoodvzduš-něníodvzduš-něníodvzduš-něníodvzduš-něnínulovací plynkalibrační plyn rozpětínulovací plynkalibrační plyn rozpětíodvzdušněníkalibrační plyn rozpětínulovací plynodvzdušněníodvzdušnění
          1.2.1 Popis částí na obrázcích 7 a 8
          EP Výfuková trubka
          SP1 Odběrná sonda výfukového plynu (jen obrázek 7)
          Doporučuje se sonda přímého tvaru, z nerezavějící oceli, s uzavřeným koncem a s více otvory. Vnitřní průměr nesmí být větší než vnitřní průměr odběrného potrubí. Tloušťka stěny sondy nesmí být větší než 1 mm. Musí mít nejméně tři otvory ve třech různých radiálních rovinách a takové velikosti, aby odebíraly přibližně stejný tok vzorku. Sonda musí pokrývat nejméně 80 % průměru výfukové trubky. Mohou se použít jedna nebo dvě odběrné sondy.
          SP2 Odběrná sonda vzorků HC ze zředěného výfukového plynu (jen obrázek 8)
          Sonda musí:
          - být definována jako první část délky 254 mm až 762 mm vyhřívaného odběrného potrubí HSL1,
          - mít minimální vnitřní průměr 5 mm,
          - být instalována v ředicím tunelu DT (viz bod 2.3, obrázek 20) v bodě, kde jsou dobře promíchány ředicí vzduch a výfukový plyn (tj. ve vzdálenosti přibližně 10 průměrů tunelu ve směru proudění plynu od bodu, v kterém vstupuje výfukový plyn do ředicího tunelu),
          - být dostatečně vzdálena (radiálně) od ostatních sond a od stěny tunelu tak, aby nebyla ovlivňována vlněními nebo víry,
          - být vyhřívána tak, aby se teplota proudu plynů ve výstupu ze sondy zvýšila na 463 K ± 10 K (190 °C ± 10 °C).
          SP3 Odběrná sonda vzorků CO, CO2, NOx ze zředěného výfukového plynu (jen obrázek 8)
          Sonda musí:
          - být v téže rovině jako SP2,
          - být dostatečně vzdálena (radiálně) od ostatních sond a od stěny tunelu tak, aby nebyla ovlivňována vlněními nebo víry,
          - být vyhřívána a izolována po celé své délce tak, aby měla teplotu nejméně 328 K (55 °C) a aby se zabránilo kondenzaci vody.
          HSL1 Vyhřívané odběrné potrubí
          Odběrné potrubí vede vzorek plynu z jediné sondy k dělicímu bodu (bodům) a k analyzátoru pro HC.
          Odběrné potrubí musí:
          - mít vnitřní průměr nejméně 5 mm a nejvýše 13,5 mm,
          - být vyrobeno z nerezavějící oceli nebo z polytetrafluorethylenu (PTFE),
          - udržovat teplotu stěn na 463 K ± 10 K (190 °C ± 10 °C), měřeno na každém odděleně regulovaném vyhřívaném úseku, jestliže se teplota výfukového plynu v odběrné sondě rovná nejvýše 463 K (190 °C),
          - udržovat teplotu stěn na hodnotě překračující 453 K (180 °C), jestliže je teplota výfukového plynu v odběrné sondě vyšší než 463 K (190 °C),
          - udržovat teplotu plynu těsně před vyhřívaným filtrem F2 a před HFID na 463 K ± 10 K (190 °C ± 10 °C).
          HSL2 Vyhřívané odběrné potrubí pro NOx
          Odběrné potrubí musí:
          - udržovat teplotu stěn od 328 K do 473 K (od 55 °C do 200 °C) až ke konvertoru C, jestliže se používá chladicí lázeň B, a až k analyzátoru jestliže se chladicí lázeň B nepoužívá,
          - být vyrobeno z nerezavějící oceli nebo z polytetrafluoretylenu (PTFE).
          SL Odběrné potrubí pro CO a CO2
          Potrubí musí být vyrobeno z PTFE nebo z nerezavějící oceli. Může být vyhřívané nebo nevyhřívané.
          BK Vak k jímání pozadí (volitelný; jen obrázek 8)
          Pro odběr vzorků koncentrací pozadí.
          BG Vak k jímání vzorků (volitelný; jen obrázek 8, pro CO a CO2)
          Pro odběr vzorků koncentrací.
          F1 Vyhřívaný předfiltr (volitelný)
          Musí být udržován na stejné teplotě jako HSL1.
          F2 Vyhřívaný filtr
          Filtr musí oddělit všechny pevné částice ze vzorku plynu, než tento vzorek vstoupí do analyzátoru. Filtr musí mít stejnou teplotu jako HSL1. Filtr se musí měnit podle potřeby.
          P Vyhřívané odběrné čerpadlo
          Čerpadlo musí být vyhříváno na teplotu HSL1.
          HC
          Vyhřívaný plamenoionizační detektor (HFID) k určení uhlovodíků. Teplota se musí udržovat na hodnotě od 453 K do 473 K (od 180 °C do 200 °C).
          CO, CO2
          Analyzátory NDIR k určení oxidu uhelnatého a oxidu uhličitého (volitelné pro určení ředicího poměru pro měření PT).
          NO
          Analyzátor CLD nebo HCLD k určení oxidů dusíku. Jestliže se použije HCLD, musí se udržovat na teplotě od 328 K do 473 K (od 55 °C do 200 °C).
          Konvertor C
          Konvertor se použije ke katalytické redukci NO2 na NO před analýzou v CLD nebo v HCLD.
          Chladicí lázeň B (volitelná)
          K ochlazení a ke kondenzaci vody ze vzorku výfukového plynu. Lázeň se musí udržovat na teplotě od 273 K do 277 K (od 0 °C do 4 °C) ledem nebo chladicím systémem. Je volitelná, jestliže na analyzátor nepůsobí rušivé vlivy vodní páry určené podle bodů 1.9.1. a 1.9.2 dodatku 5 k příloze III. Jestliže se voda odstraňuje kondenzací, musí se monitorovat teplota vzorku plynu nebo rosný bod buď v odlučovači vody, nebo v toku za ním. Teplota vzorku plynu nebo rosného bodu nesmí překročit 280 K (7 °C). Pro odstranění vody ze vzorku není přípustné chemické sušení.
          T1, T2, T3 Snímač teploty
          Pro monitorování teploty proudu plynu.
          T4 Snímač teploty
          Pro monitorování teploty konvertoru NO2 – NO.
          T5 Snímač teploty
          Pro monitorování teploty chladicí lázně.
          G1, G2, G3 Snímač tlaku
          Pro měření tlaku v odběrných potrubích.
          R1, R2 Regulátor tlaku
          Pro řízení tlaku vzduchu a popřípadě paliva pro HFID.
          R3, R4, R5 Regulátor tlaku
          Pro řízení tlaku v odběrných potrubích a toku k analyzátorům.
          FL1, FL2, FL3 Průtokoměr
          Pro monitorování průtoku vzorku obtokem.
          FL4 až FL6 Průtokoměr (volitelný)
          Pro monitorování průtoku analyzátory.
          V1 až V5 Vícecestný ventil
          Ventily vhodné k volitelnému přepínání toku vzorku, kalibračního plynu rozpětí nebo nulovacího plynu do analyzátoru.
          V6, V7 Elektromagnetický ventil
          Pro obtok konvertoru NO2 – NO.
          V8 Jehlový ventil
          Pro vyrovnání průtoku konvertorem NO2 – NO C a obtokem.
          V9, V10 Jehlový ventil
          Pro řízení průtoků do analyzátorů.
          V11, V12 Vypouštěcí ventil (volitelný)
          Pro vypouštění kondenzátu z lázně B.
          1.3 Analýza NMHC (jen pro plynové motory na NG)
          1.3.1 Metoda plynové chromatografie (GC, obrázek 9)
          Při použití metody GC se vpouští malý měřený objem vzorku na analytický sloupec, přičemž vzorek je nesen inertním nosným plynem. Sloupec oddělí jednotlivé složky podle jejich bodu varu, takže unikají ze sloupce v různých časech. Pak procházejí detektorem, který vyšle elektrický signál, jenž závisí na jejich koncentraci. Protože to není kontinuální analytická technika, může se použít jen ve spojení s metodou jímání vzorku do vaku, jak je popsána v bodě 3.4.2 dodatku 4 k příloze III.
          K analýze NMHC se použije automatizovaná GC s detektorem FID. Výfukový plyn se odebírá do vaku k jímání vzorku, odkud se odebere jeho část a vpustí se do GC. Vzorek se na Porapakově sloupci rozdělí na dvě části (CH4 / vzduch / CO a NMHC / CO2 / H2O). Sloupec s molekulárním sítem oddělí CH4 od vzduchu a od CO předtím, než CH4 projde do detektoru FID, kde se změří jeho koncentrace. Úplný cyklus od vpuštění jednoho vzorku do vpuštění druhého vzorku se může provést za 30 s. K určení NMHC se odečte koncentrace CH4 od koncentrace celku HC (viz bod 4.3.1 dodatku 2 k příloze III).
          Na obrázku 9 je znázorněna typická GC vhodná k rutinnímu určení CH4. Je možné použít také jiné metody GC na základě odborného technického posouzení.
          Obrázek 9
          Schéma analýzy methanu (metoda GC)
          +++++ TIFF +++++
          přívod palivak xpřívod vzduchuodvzdušněnípeckalibrační plyn rozpětík yodvzdušněnívzorek
          Popis částí na obrázku 9
          PC Porapakův sloupec
          Použije se Porapakův sloupec N, 180/300 μm (velikost ok 50/80), délka 610 mm x vnitřní průměr 2,16 mm, a stabilizuje se před prvním použitím po dobu nejméně 12 hodin při 423 K (150 °C) s nosným plynem.
          MSC Sloupec s molekulárním sítem
          Použije se sloupec typu 13X, 250/350 μm (velikost ok 45/60), délka 1220 mm x vnitřní průměr 2,16 mm, a stabilizuje se před prvním použitím po dobu nejméně 12 hodin při 423 K (150 °C) s nosným plynem.
          OV Pec
          K udržení sloupců a ventilů na stabilní teplotě pro provoz analyzátoru a k stabilizaci sloupců při 423 K (150 °C).
          SLP Smyčka pro vzorek
          Trubka z nerezavějící oceli délky dostatečné k vytvoření objemu přibližně 1 cm3.
          P Čerpadlo
          Pro dopravu vzorku do plynového chromatografu.
          D Sušič
          Pro odstranění vody a jiných znečišťujících látek, které mohou být v nosném plynu, se použije sušič obsahující molekulární síto.
          HC
          Plamenoionizační detektor (FID) k měření koncentrace methanu.
          V1 Ventil ke vpouštění vzorku
          Ke vpouštění vzorku odebraného z vaku k jímání vzorku vedeného potrubím SL podle obrázku 8. Musí mít malý mrtvý prostor, být plynotěsný a musí jej být možné zahřát na teplotu 423 K (150 °C).
          V3 Vícecestný ventil
          Pro volbu kalibračního plynu rozpětí, vzorku nebo k uzavření.
          V2, V4, V5, V6, V7, V8 Jehlový ventil
          Pro nastavení průtoku v systému.
          R1, R2, R3 Regulátor tlaku
          Pro řízení průtoků paliva (= nosný plyn), vzorku a vzduchu.
          FC Průtoková kapilára
          Pro řízení průtoku vzduchu k detektoru FID.
          G1, G2, G3 Snímač tlaku
          Pro řízení průtoků paliva (= nosný plyn), vzorku a vzduchu.
          F1, F2, F3, F4, F5 Filtr
          Filtry ze sintrovaného kovu k zabránění vniknutí částic nečistot do čerpadla nebo do přístrojů.
          FM1
          Pro měření průtoku vzorku obtokem.
          1.3.2 Metoda separátoru uhlovodíků jiných než methan (NMC, obrázek 10)
          Separátor oxiduje všechny uhlovodíky, kromě CH4, na CO2 a H2O tak, aby při průchodu vzorku přístrojem NMC měřil detektor FID jen CH4. Jestliže se použije vak k jímání vzorku, musí se instalovat na SL (viz bod 1.2, obrázek 8) systém rozdělující tok, aby mohl alternativně procházet separátorem nebo jej obtékat podle horní části obrázku 10. Při měření NMHC se musí pozorovat na detektoru FID a zaznamenávat obě hodnoty (HC a CH4). Jestliže se použije metoda integrace, musí se instalovat do HSL1 (viz bod 1.2, obrázek 8) paralelně s normálním FID separátor NMC zapojený do série s dalším FID podle dolní části obrázku 10. Při měření NMHC se musí pozorovat a zaznamenávat hodnoty (HC a CH4) udávané oběma detektory FID.
          Musí se určit katalytický účinek separátoru na CH4 a C2H6 při teplotě nejméně 600 K (327 °C) před měřením a při hodnotách H2O, které jsou reprezentativní pro podmínky v proudu výfukových plynů. Musí být znám rosný bod a obsah O2 v odebraném vzorku výfukových plynů. Musí se zaznamenat relativní odezva detektoru FID na CH4 (viz bod 1.8.2 dodatku 5 k příloze III).
          Obrázek 10
          Schéma analýzy methanu separátorem uhlovodíků jiných než methan (NMC)
          +++++ TIFF +++++
          nulovací plynkalibovacíplyn rozpětíodvzdušněnívzorek(viz obrázek 8)odvzdušněníodvzdušněnímetoda vaku pro jímání vzorkůnulovací plynkalibovacíplyn rozpětívzorek(viz obrázek 8)metoda integrace
          Popis částí na obrázku 10
          NMC Separátor uhlovodíků jiných než methan
          Pro oxidování všech uhlovodíků kromě methanu.
          HC
          Vyhřívaný plamenoionizační detektor (HFID) k měření koncentrací HC a CH4. Teplota se musí udržovat na hodnotě od 453 K do 473 K (od 180 °C do 200 °C).
          V1 Vícecestný ventil
          Pro volbu vzorku, nulovacího plynu a kalibračního plynu rozpětí. V1 je identický s V2 na obrázku 8.
          V2, V3 Elektromagnetický ventil
          Pro zapojení obtoku NMC.
          V4 Jehlový ventil
          Pro vyrovnání průtoku separátorem NMC a obtokem.
          R1 Regulátor tlaku
          Pro řízení tlaku v odběrném potrubí a toku k HFID. R1 je identický s R3 na obrázku 8.
          FM1 Průtokoměr
          Pro měření průtoku vzorku v obtoku. FM1 je identický s FM1 na obrázku 8.
          2. ŘEDĚNÍ VÝFUKOVÉHO PLYNU A URČENÍ ČÁSTIC
          2.1 Úvod
          Body 2.2, 2.3 a 2.4 a obrázky 11 až 22 obsahují podrobný popis doporučených systémů pro ředění a odběr vzorků. Protože různá uspořádání mohou dávat rovnocenné výsledky, nepožaduje se přesné dodržení zobrazených schémat. K získání doplňkových informací a ke koordinování funkcí dílčích systémů je možné použít další části, jako jsou přístroje, ventily, elektromagnety, čerpadla a spínače. Jiné části, které nejsou potřebné k udržování přesnosti některých systémů, mohou být vyloučeny z použití, jestliže je jejich vyloučení založeno na odborném technickém posouzení.
          2.2 Systém s ředěním části toku
          Na obrázcích 11 až 19 je popsán systém založený na ředění části toku výfukového plynu. Rozdělení proudu výfukového plynu a následující postup ředění se může provést různými druhy systémů ředění. K následnému jímání částic prochází systémem pro odběr vzorku částic všechen zředěný výfukový plyn nebo jen část zředěného výfukového plynu (bod 2.4, obrázek 21). První metoda se označuje jako odběr celkového vzorku, druhá metoda se označuje jako odběr dílčího vzorku.
          Výpočet ředicího poměru závisí na druhu použitého systému. Doporučeny jsou tyto druhy:
          Izokinetické systémy (obrázky 11, 12)
          U těchto systémů je tok vedený do přenosové trubky přizpůsoben celkovému toku výfukového plynu z hlediska rychlosti plynu nebo tlaku a v důsledku toho je na odběrné sondě požadován nerušený a rovnoměrný tok výfukového plynu. Toho se obvykle dosáhne rezonátorem a přímou přívodní trubicí umístěnou před bodem odběru vzorku. Dělicí poměr se pak vypočte ze snadno měřitelných hodnot, jako jsou průměry trubek. Je potřebné poznamenat, že izokinetika se používá jen k vyrovnání podmínek toku a ne k vyrovnání rozdělení podle velikostí. Toto vyrovnání není zpravidla nutné, protože částice jsou dostatečně malé, aby sledovaly proudnice výfukového plynu.
          Systémy s řízením průtoku a s měřením koncentrace (obrázky 13 až 17)
          U těchto systémů se vzorek odebírá z celkového toku výfukového plynu seřízením průtoku ředicího vzduchu a průtoku celkového toku zředěného výfukového plynu. Ředicí poměr se určí z koncentrací sledovacích plynů, jako jsou CO2 nebo NOx, které jsou běžně obsaženy ve výfukovém plynu motoru. Měří se koncentrace zředěného výfukového plynu a ředicího vzduchu, kdežto koncentrace surového výfukového plynu se může měřit buď přímo, nebo se může určit z průtoku paliva a z rovnice bilance uhlíku, jestliže je známo složení paliva. Systémy mohou být řízeny na základě vypočteného ředicího poměru (obrázky 13, 14) nebo průtokem do přenosové trubky (obrázky 12, 13, 14).
          Systémy s řízením průtoku a s měřením průtoku (obrázky 18, 19)
          U těchto systémů je vzorek odebírán z celkového toku výfukového plynu nastavením průtoku ředicího vzduchu a průtoku celkového toku zředěného výfukového plynu. Ředicí poměr se určí z rozdílu těchto dvou průtoků. Požaduje se přesná vzájemná kalibrace průtokoměrů, protože relativní velikost obou průtoků může vést při větších ředicích poměrech (15 a větších) k významným chybám. Průtok je řízen velmi přímým způsobem tím, že se průtok zředěného výfukového plynu udržuje konstantní, a jestliže je to potřebné, mění se průtok ředicího vzduchu.
          Když se používají systémy s ředěním části toku, musí se věnovat pozornost potenciálním problémům ztrát částic v přenosové trubce, zajištění odběru reprezentativního vzorku z výfukového plynu motoru a určení dělicího poměru. Popisované systémy berou zřetel na tyto kritické oblasti.
          Obrázek 11
          Systém s ředěním části toku s izokinetickou sondou a s odběrem dílčího vzorku (řízení SB)
          +++++ TIFF +++++
          odvzduš-něník systému odběru vzorku částicvýfukový plynvzduchviz obrázek 21
          Surový výfukový plyn se převádí z výfukové trubky EP izokinetickou odběrnou sondou ISP a přenosovou trubkou TT do ředicího tunelu DT. Rozdíl tlaku výfukového plynu mezi výfukovou trubkou a vstupem do sondy se měří snímačem tlaku DPT. Tento signál se převádí na regulátor průtoku FC1, který řídí sací ventilátor SB tak, aby se na vstupu sondy udržoval nulový tlakový rozdíl. Za těchto podmínek jsou rychlosti výfukového plynu v EP a ISP identické a průtok zařízeními ISP a TT je konstantním podílem průtoku výfukového plynu. Dělicí poměr se určí z příčných průřezů EP a ISP. Průtok ředicího vzduchu se měří průtokoměrem FM1. Ředicí poměr se vypočte z průtoku ředicího vzduchu a z dělicího poměru.
          Obrázek 12
          Systém s ředěním části toku s izokinetickou sondou a s odběrem dílčího vzorku (řízení PB)
          +++++ TIFF +++++
          odvzduš-něník systému odběru vzorku částicvýfukový plynvzduchviz obrázek 21
          Surový výfukový plyn se převádí z výfukové trubky EP izokinetickou odběrnou sondou ISP a přenosovou trubkou TT do ředicího tunelu DT. Rozdíl tlaku výfukového plynu mezi výfukovou trubkou a vstupem do sondy se měří snímačem tlaku DPT. Tento signál se převádí na regulátor průtoku FC1, kterým je řízen tlakový ventilátor PB tak, aby se na vstupu sondy udržoval nulový tlakový rozdíl. Toho se dosáhne tím, že se odebírá malá část ředicího vzduchu, jehož průtok byl právě změřen průtokoměrem FM1, a tato část se zavede do TT pneumatickou clonou. Za těchto podmínek jsou rychlosti výfukového plynu v EP a ISP identické a průtok zařízeními ISP a TT je konstantním podílem průtoku výfukového plynu. Dělicí poměr se určí z příčných průřezů EP a ISP. Ředicí vzduch je nasáván ředicím tunelem DT pomocí sacího ventilátoru SB a průtok se měří průtokoměrem FM1, který je na vstupu do DT. Ředicí poměr se vypočte z průtoku ředicího vzduchu a z dělicího poměru.
          Obrázek 13
          Systém s ředěním části toku s měřením koncentrace CO2 nebo NOx a s odběrem dílčího vzorku
          +++++ TIFF +++++
          odvzdušněník systému odběru vzorku částicvýfukový plynvzduchviz obrázek 21volitelně kP nebo SB
          Surový výfukový plyn se převádí z výfukové trubky EP odběrnou sondou SP a přenosovou trubkou TT do ředicího tunelu DT. Koncentrace sledovacího plynu (CO2 nebo NOx) se měří v surovém i zředěném výfukovém plynu a v ředicím vzduchu analyzátorem (analyzátory) EGA. Tyto signály se přenášejí do regulátoru průtoku FC2, který řídí buď tlakový ventilátor PB, nebo sací ventilátor SB tak, aby se v tunelu DT udržovaly požadované dělení toku výfukového plynu a ředicí poměr. Ředicí poměr se vypočte z koncentrací sledovacího plynu v surovém výfukovém plynu, ve zředěném výfukovém plynu a v ředicím vzduchu.
          Obrázek 14
          Systém s ředěním části toku s měřením koncentrace CO2, s bilancí uhlíku a s odběrem celkového vzorku
          +++++ TIFF +++++
          podrobnosti viz obrázek 21výfukový plynvzduchvolitelně z FC2volitelně k P
          Surový výfukový plyn se převádí z výfukové trubky EP odběrnou sondou SP a přenosovou trubkou TT do ředicího tunelu DT. Koncentrace CO2 se měří ve zředěném výfukovém plynu a v ředicím vzduchu analyzátorem (analyzátory) EGA. Signály CO2 a průtoku paliva GFUEL se přenášejí buď do regulátoru průtoku FC2, nebo do regulátoru průtoku FC3 systému k odběru vzorku částic (viz obrázek 21). FC2 řídí tlakový ventilátor PB, FC3 řídí odběrné čerpadlo P (viz obrázek 21), a tím seřizují toky do systému a z něj tak, aby se v tunelu DT udržovaly požadované dělení toku výfukového plynu a ředicí poměr. Ředicí poměr se vypočte z koncentrací CO2 a z GFUEL s použitím metody bilance uhlíku.
          Obrázek 15
          Systém s ředěním části toku s jednoduchou Venturiho clonou, s měřením koncentrace a s odběrem dílčího vzorku
          +++++ TIFF +++++
          vzduchodvzdušněníviz obrázek 21k systému pro odběr vzorku částicvýfukový plyn
          Surový výfukový plyn se převádí z výfukové trubky EP odběrnou sondou SP a přenosovou trubkou TT do ředicího tunelu DT působením podtlaku tvořeného Venturiho clonou VN v DT. Průtok plynu skrz TT závisí na změně hybnosti v oblasti Venturiho clony, a je tak ovlivňován absolutní teplotou plynu ve výstupu z TT. V důsledku toho není dělení toku výfukového plynu pro daný průtok tunelem konstantní a ředicí poměr je při malém zatížení poněkud menší než při velkém zatížení. Koncentrace sledovacího plynu (CO2 nebo NOx) se měří v surovém výfukovém plynu, ve zředěném výfukovém plynu a v ředicím vzduchu analyzátorem (analyzátory) EGA a ředicí poměr se vypočte z hodnot takto změřených.
          Obrázek 16
          Systém s ředěním části toku s dvojitou Venturiho clonou nebo s dvojitou Venturiho trubicí, s měřením koncentrace a s odběrem dílčího vzorku
          +++++ TIFF +++++
          k systému pro odběr vzorku částicvzduchodvzdušněníviz obrázek 21výfukový plyn
          Surový výfukový plyn se převádí z výfukové trubky EP odběrnou sondou SP a přenosovou trubkou TT do ředicího tunelu DT děličem toku, který obsahuje sadu Venturiho trubic nebo clon. První z nich (FD1) je umístěna v EP, druhá (FD2) v TT. Dále jsou nutné dva řídicí ventily tlaku (PCV1 a PCV2) k udržování stálého dělicího poměru řízením protitlaku v EP a tlaku v DT. PCV1 je umístěna v EP za SP ve směru toku plynů, PCV2 je umístěna mezi tlakovým ventilátorem PB a DT. Koncentrace sledovacího plynu (CO2 nebo NOx) se měří v surovém výfukovém plynu, ve zředěném výfukovém plynu a v ředicím vzduchu analyzátorem (analyzátory) EGA. Koncentrace jsou potřebné k ověření dělicího poměru toku výfukového plynu a mohou se použít k seřízení PCV1 a PCV2 k přesnému řízení dělicího poměru. Ředicí poměr se vypočte z koncentrací sledovacího plynu.
          Obrázek 17
          Systém s ředěním části toku s rozdělením do více trubek, s měřením koncentrace a s odběrem dílčího vzorku
          +++++ TIFF +++++
          k systému pro odběr vzorku částicvpouštění čerstvého vzduchuvzduchodvzdušněníviz obrázek 21vzduch
          Surový výfukový plyn se převádí z výfukové trubky EP přenosovou trubkou TT do ředicího tunelu DT, a to cestou děliče toku FD3, který se skládá z většího počtu trubek týchž rozměrů (stejný průměr, délka a poloměr zakřivení) a který je instalován v EP. Jednou z těchto trubek se vede výfukový plyn do DT a ostatními trubkami se výfukový plyn vede tlumicí komorou DC. Dělicí poměr je tedy určen celkovým počtem trubek. Řízení konstantního rozdělení vyžaduje nulový rozdíl tlaku mezi tlakem v DC a na výstupu z TT, který se měří diferenciálním tlakovým snímačem DPT. Nulový rozdíl tlaku se dosahuje vpouštěním čerstvého vzduchu do DT u výstupu z TT. Koncentrace sledovacího plynu (CO2 nebo NOx) se měří v surovém výfukovém plynu, ve zředěném výfukovém plynu a v ředicím vzduchu analyzátorem (analyzátory) výfukového plynu EGA. Koncentrace jsou potřebné k ověření dělicího poměru toku výfukového plynu a mohou se použít k řízení průtoku vpouštěného vzduchu, kterým se zpřesní řízení dělicího poměru. Ředicí poměr se vypočte z koncentrací sledovacího plynu.
          Obrázek 18
          Systém s ředěním části toku, s řízením průtoku a s odběrem celkového vzorku
          +++++ TIFF +++++
          volitelně k P (PSS)neboodvzduš-něnípodrobnosti viz obrázek 21výfukový plynnebo
          Surový výfukový plyn se převádí z výfukové trubky EP odběrnou sondou SP a přenosovou trubkou TT do ředicího tunelu DT. Celkový průtok tunelem se nastavuje regulátorem FC3 a odběrným čerpadlem P systému pro odběr vzorku částic (viz obrázek 18). Průtok ředicího vzduchu se řídí regulátorem průtoku FC2, který může používat GEXHW, GAIRW, nebo GFUEL jako řídicí signály pro požadovaný dělicí poměr výfukového plynu. Průtok vzorku do DT je rozdílem celkového průtoku a průtoku ředicího vzduchu. Průtok ředicího vzduchu se měří průtokoměrem FM1, celkový průtok průtokoměrem FM3 systému pro odběr vzorku částic (viz obrázek 21). Dělicí poměr se vypočte z těchto dvou průtoků.
          Obrázek 19
          Systém s ředěním části toku s řízením průtoku a s odběrem dílčího vzorku
          +++++ TIFF +++++
          k PB nebo SBneboodvzdušněník systému pro odběr vzorku částic viz obrázek 21výfukový plynnebovzduchviz obrázek 21
          Surový výfukový plyn se převádí z výfukové trubky EP odběrnou sondou SP a přenosovou trubkou TT do ředicího tunelu DT. Rozdělení výfukového plynu a průtok do DT se řídí regulátorem průtoku FC2, který reguluje průtoky (nebo otáčky) tlakového ventilátoru PB a sacího ventilátoru SB. To je možné, protože vzorek odebraný ze systému k odběru částic se vrací do DT. GEXHW, GAIRW, nebo GFUEL se mohou použít jako řídicí signály pro FC2. Průtok ředicího vzduchu se měří průtokoměrem FM1, celkový průtok se měří průtokoměrem FM2. Dělicí poměr se vypočte z těchto dvou průtoků.
          2.2.1 Popis částí na obrázcích 11 až 19
          EP Výfuková trubka
          Výfuková trubka může být izolována. Ke zmenšení tepelné setrvačnosti výfukové trubky se doporučuje, aby poměr tloušťky stěny k průměru trubky byl nejvýše 0,015. Používání ohebných částí se musí omezit na délku, jejíž poměr k průměru je nejvýše 12. Ohyby se musí co nejvíce omezit, aby se zmenšily úsady vzniklé působením setrvačných sil. Jestliže k systému patří tlumič výfuku zkušebního stavu, musí být také tento tlumič izolován.
          U izokinetického systému nesmí mít výfuková trubka kolena, ohyby a náhlé změny průměru, a to od vstupu sondy v délce nejméně 6 průměrů trubky proti směru proudění a 3 průměrů trubky ve směru proudění. Rychlost průtoku plynu v oblasti odběru musí být vyšší než 10 m/s, kromě volnoběžného režimu. Kolísání tlaku výfukového plynu nesmějí překračovat v průměru ± 500 Pa. Jakékoliv kroky ke zmenšení kolísání tlaku, které překračují použití výfukového systému vozidla (včetně tlumiče a zařízení k následnému zpracování výfukového plynu), nesmějí měnit výkonové vlastnosti motoru ani způsobovat úsady částic.
          U systémů bez izokinetické sondy se doporučuje, aby trubka byla přímá od vstupu sondy v délce nejméně 6 průměrů trubky proti směru proudění a tří průměrů trubky ve směru proudění.
          SP Odběrná sonda (obrázky 10, 14, 15, 16, 18, 19)
          Nejmenší vnitřní průměr musí být 4 mm. Poměr průměru výfukové trubky systému k průměru sondy musí být nejméně 4. Sondou musí být otevřená trubka směřující proti proudu plynu instalovaná v ose výfukové trubky nebo sonda s více otvory podle popisu v položce SP1 v bodě 1.2.1 obrázku 5.
          ISP Izokinetická odběrná sonda (obrázky 11, 12)
          Izokinetická odběrná sonda vzorku musí být instalována směrem proti proudu plynu v ose výfukové trubky v té její části, která splňuje podmínky průtoku v úseku EP, a musí být konstruována tak, aby zabezpečovala proporcionální vzorek surového výfukového plynu. Musí mít vnitřní průměr nejméně 12 mm.
          Izokinetické dělení výfukového plynu udržováním nulového rozdílu tlaku mezi EP a ISP vyžaduje řídicí systém. Za těchto podmínek jsou rychlosti výfukového plynu v EP a v ISP identické a hmotnostní průtok sondou ISP je pak konstantní částí průtoku výfukového plynu. ISP musí být napojena na diferenciální tlakový snímač DPT. Regulátorem průtoku FC1 se zajišťuje nulový rozdíl tlaku mezi EP a ISP.
          FD1, FD2 Dělič toku (obrázek 16)
          Ve výfukové trubce EP a v přenosové trubce TT je instalována sada Venturiho clon nebo trubic, která zajišťuje proporcionální vzorek surového výfukového plynu. K proporcionálnímu rozdělování řízením tlaků v EP a v DT je nutný regulační systém, který se skládá ze dvou ventilů k řízení tlaku PCV1 a PCV2.
          FD3 Dělič toku (obrázek 17)
          Ve výfukové trubce EP je instalována sada trubek (vícetrubková jednotka), která zajišťuje proporcionální vzorek surového výfukového plynu. Jedna z těchto trubek vede výfukový plyn do ředicího tunelu DT, kdežto ostatními trubkami se přivádí výfukový plyn do tlumicí komory DC. Trubky musí mít totožné rozměry (stejný průměr, délku, poloměr ohybu), aby rozdělování výfukového plynu záviselo jen na celkovém počtu trubek. K proporcionálnímu rozdělování je nutný regulační systém, který udržuje nulový rozdíl tlaku mezi výstupem sady trubek do komory DC a výstupem trubky TT. Za těchto podmínek jsou rychlosti výfukového plynu v EP a v FD3 proporcionální a průtok trubkou TT je pak konstantní částí průtoku výfukového plynu. Oba body se musí napojit na diferenciální tlakový snímač DPT. Regulátorem průtoku FC1 se zajišťuje nulový rozdíl tlaku.
          EGA Analyzátor výfukového plynu (obrázky 13, 14, 15, 16, 17)
          Mohou se použít analyzátory CO2 nebo NOx (u metody bilance uhlíku pouze analyzátor CO2). Analyzátory musí být kalibrovány stejně jako analyzátory k měření plynných emisí. K určení rozdílů koncentrací se může použít jeden nebo více analyzátorů. Přesnost měřicích systémů musí být taková, aby přesnost určení GEDFW,i byla ± 4 %.
          TT Přenosová trubka (obrázky 11 až 19)
          Přenosová trubka musí:
          - být co možno nejkratší, nesmí však být delší než 5 m,
          - mít průměr shodný jako průměr sondy nebo větší, avšak nejvýše 25 mm,
          - mít výstup v ose ředicího tunelu a ve směru proudu.
          Je-li délka trubky nejvýše 1 m, musí být izolována materiálem s maximální tepelnou vodivostí 0,05 W/(m · K) s radiální tloušťkou izolace odpovídající průměru sondy. Jestliže je trubka delší než 1 m, musí být izolována a vyhřívána tak, aby teplota stěny byla nejméně 523 K (250 °C).
          DPT Diferenciální snímač tlaku (obrázky 11, 12, 17)
          Diferenciální snímač tlaku musí mít rozsah nejvýše ± 500 Pa.
          FC1 Regulátor průtoku (obrázky 11, 12, 17)
          Regulátor průtoku je u izokinetických systémů (obrázky 11, 12) nutný k udržování nulového rozdílu tlaku mezi EP a ISP. Regulace může být:
          a) řízením otáček nebo průtoku sacího ventilátoru SB a udržováním otáček nebo průtoku tlakovým ventilátorem PB konstantních v každém režimu (obrázek 11) nebo
          b) seřízením sacího ventilátoru SB na konstantní hmotnostní průtok zředěného výfukového plynu a řízením průtoku tlakovým ventilátorem PB a tím průtoku vzorku výfukového plynu v oblasti na konci přenosové trubky TT (obrázek 12).
          U systému s řízeným tlakem nesmí zbytková chyba v řídicí smyčce překročit ± 3 Pa. Kolísání tlaku v ředicím tunelu nesmí překročit v průměru ± 250 Pa.
          U systému s rozdělováním několika trubkami (obrázek 17) je regulátor průtoku nutný k proporcionálnímu rozdělování výfukového plynu udržováním nulového rozdílu tlaku mezi výstupem ze sady více trubek a výstupem TT. Seřízení se provede řízením průtoku vzduchu vpouštěného do DT u výstupu TT.
          PCV1, PCV2 Ventil k řízení tlaku (obrázek 16)
          U systému s dvojitými Venturiho clonami / dvojitými Venturiho trubicemi jsou nutné dva ventily k řízení tlaku, aby řízením protitlaku v EP a tlaku v DT se tok proporcionálně rozděloval. Ventily musí být umístěny v EP, a to za SP ve směru proudění, a mezi PB a DT.
          DC Tlumicí komora (obrázek 17)
          Tlumicí komora musí být instalována na výstupu sady více trubek, aby se minimalizovala kolísání tlaku ve výfukové trubce EP.
          VN Venturiho clona (obrázek 15)
          K vytvoření podtlaku v oblasti výstupu přenosové trubky TT se instaluje v ředicím tunelu DT Venturiho clona. Průtok v TT je určen změnou hybnosti v oblasti Venturiho clony a v zásadě je úměrný průtoku tlakovým ventilátorem PB a tím se dosahuje konstantní ředicí poměr. Protože změna hybnosti je ovlivňována teplotou na výstupu TT a rozdílem tlaků mezi EP a DT, je skutečný ředicí poměr poněkud menší při malém zatížení než při velkém zatížení.
          FC2 Regulátor průtoku (obrázky 13, 14, 18, 19, volitelný)
          Regulátor průtoku může být použit k řízení průtoku tlakovým ventilátorem PB nebo sacím ventilátorem SB. Může být napojen na signály průtoku výfukových plynů, nasávaného vzduchu nebo paliva nebo na signály diferenciálního snímače CO2 nebo NOx. Jestliže se používá systém dodávky tlakového vzduchu (obrázek 18), je průtok vzduchu přímo řízen pomocí FC2.
          FM1 Průtokoměr (obrázky 11, 12, 18, 19)
          Plynoměr nebo jiný přístroj k měření průtoku ředicího vzduchu. FM1 je volitelný, jestliže je tlakový ventilátor PB kalibrován k měření průtoku.
          FM2 Průtokoměr (obrázek 19)
          Plynoměr nebo jiný přístroj k měření průtoku zředěného výfukového plynu. FM2 je volitelný, jestliže je sací ventilátor SB kalibrován k měření průtoku.
          PB Tlakový ventilátor (obrázky 11, 12, 13, 14, 15, 16, 19)
          K řízení průtoku ředicího vzduchu může být PB připojen k regulátorům průtoku FC1 nebo FC2. PB se nepožaduje, jestliže se použije škrticí klapka. PB se může použít k měření průtoku ředicího vzduchu, jestliže je kalibrován.
          SB Sací ventilátor (obrázky 11, 12, 13, 16, 17, 19)
          Pouze pro systémy s odběrem dílčího vzorku. SB se může použít k měření průtoku zředěného výfukového plynu, jestliže je kalibrován.
          DAF Filtr ředicího vzduchu (obrázky 11 až 19)
          S cílem vyloučení uhlovodíků z pozadí se doporučuje, aby ředicí vzduch byl filtrován a prošel aktivním uhlím. Na žádost výrobce motoru se odebere vzorek ředicího vzduchu podle osvědčené technické praxe, aby se určily hladiny částic v pozadí, které se pak mohou odečíst od hodnot změřených ve zředěném výfukovém plynu.
          DT Ředicí tunel (obrázky 11 až 19)
          Ředicí tunel:
          - musí mít dostatečnou délku, aby se výfukové plyny a ředicí vzduch úplně promísily za podmínek turbulentního toku,
          - musí být vyroben z nerezavějící oceli a mít:
          - poměr tloušťky stěny k průměru nejvýše 0,025 u ředicích tunelů s vnitřním průměrem větším než 75 mm,
          - jmenovitou tloušťku stěny nejméně 1,5 mm u ředicích tunelů s vnitřním průměrem nejvýše 75 mm,
          - musí mít průměr nejméně 75 mm u systému s odběrem dílčího vzorku,
          - doporučuje se, aby měl průměr nejméně 25 mm u systému pro odběr celkového vzorku,
          - může být vyhříván na teplotu stěny nepřekračující 325 K (52 °C) přímým ohřevem nebo předehřátím ředicího vzduchu za předpokladu, že teplota vzduchu nepřekročí 325 K (52 °C) před vstupem výfukového plynu do ředicího tunelu,
          - může být izolovaný.
          Výfukový plyn motoru musí být důkladně promíchán s ředicím vzduchem. U systémů s odběrem dílčího vzorku se kvalita promísení ověří po uvedení do provozu, k tomu se využije profil CO2 tunelu, motor je v chodu (při alespoň čtyřech rovnonoměrně rozložených měřicích bodech). Jestliže je to nutné, mohou se použít mísicí clony.
          Poznámka:
          Jestliže je teplota okolí v blízkosti ředicího tunelu (DT) nižší než 293 K (20 °C), je třeba dbát na to, aby se zamezilo ztrátám částic na chladných stěnách ředicího tunelu. Proto se doporučuje vyhřívání nebo izolace tunelu v mezích uvedených výše. Při vysokých zatíženích motoru se může tunel chladit neagresivními prostředky, jako je oběhový ventilátor, tak dlouho, dokud teplota chladicího média neklesne pod 293 K (20 °C).
          HE Výměník tepla (obrázky 16, 17)
          Výměník tepla musí mít dostatečnou kapacitu, aby udržoval na vstupu sacího čerpadla SB teplotu v mezích ± 11 K od střední pracovní teploty pozorované v průběhu zkoušky.
          2.3 Systém s ředěním plného toku
          Na obrázku 20 je popsán ředicí systém založený na ředění celého toku výfukového plynu a používající princip CVS (odběr vzorků s konstantním objemem). Musí se měřit celkový objem směsi výfukového plynu a ředicího vzduchu. Je možno používat buď systém PDP, nebo systém CFV.
          K následnému jímání částic prochází vzorek zředěného výfukového plynu do systému pro odběr vzorku částic (bod 2.4 a obrázky 21 a 22). Jestliže se tak děje přímo, označuje se to jako jednoduché ředění. Jestliže se vzorek ředí ještě jednou v sekundárním ředicím tunelu, označuje se to jako dvojité ředění. Tato metoda je užitečná, jestliže jednoduchým ředěním nemůže být dodržena požadovaná teplota na vstupu filtru. Systém s dvojitým ředěním, přestože je zčásti ředicím systémem, je popisován v bodě 2.4 a v obrázku 22 jako modifikace systému pro odběr vzorku částic, protože má většinu částí shodnou s typickým systémem k odběru vzorku částic.
          Obrázek 20
          Systém s ředěním plného toku
          +++++ TIFF +++++
          je-li použit EFCvolitelnýviz obrázek 21výfukový plynk systému pro odběr vzorku částic nebo k DDS viz obrázek 22vzduchk filtru pozadí
          Celkové množství surového výfukového plynu se smísí v ředicím tunelu DT s ředicím vzduchem. Průtok zředěného výfukového plynu se měří buď objemovým dávkovacím čerpadlem PDP, nebo Venturiho clonou s kritickým průtokem CFV. Výměník tepla HE nebo elektronická kompenzace průtoku EFC se mohou použít k proporcionálnímu odběru vzorku částic a k určení průtoku. Protože určení hmotnosti částic se zakládá na průtoku celkového toku zředěného výfukového plynu, nepožaduje se výpočet ředicího poměru.
          2.3.1 Popis částí na obrázku 20
          EP Výfuková trubka
          Délka výfukového potrubí od výstupu ze sběrného potrubí motoru, výstupu turbodmychadla nebo ze zařízení k následnému zpracování výfukových plynů k ředicímu tunelu nesmí překročit 10 m. Jestliže délka výfukové trubky za sběrným potrubím motoru, výstupem turbodmychadla nebo za zařízením k následnému zpracování výfukových plynů překračuje 4 m, musí být celá část potrubí překračující 4 m izolovaná, kromě kouřoměru instalovaného v sériovém zapojení do potrubí, pokud je kouřoměr instalován. Radiální tloušťka izolace musí být nejméně 25 mm. Tepelná vodivost izolačního materiálu musí mít hodnotu nejvýše 0,1 W/m · K, měřeno při 673 K (400 oC). K omezení tepelné setrvačnosti výfukové trubky se doporučuje, aby poměr tloušťky stěny k průměru byl nejvýše 0,015. Používání ohebných úseků se musí omezit na poměr délky k průměru nejvýše 12.
          PDP Objemové dávkovací čerpadlo
          PDP měří celkový průtok zředěného výfukového plynu z počtu otáček čerpadla a z výtlaku čerpadla. Protitlak výfukového systému se nesmí uměle snižovat čerpadlem PDP nebo systémem vpouštění ředicího vzduchu. Statický protitlak ve výfuku měřený systémem PDP v činnosti se musí udržovat v rozmezí ± 1,5 kPa od statického tlaku, který byl změřen při identických otáčkách a zatížení motoru bez připojení k systému PDP. Teplota směsi plynu měřená bezprostředně před PDP musí zůstat v rozmezí ± 6 K od střední provozní teploty zjištěné v průběhu zkoušky, když se nepoužije žádná kompenzace průtoku. Kompenzaci průtoku je možno použít jen tehdy, jestliže teplota na vstupu PDP nepřekračuje 323 K (50 °C).
          CFV Venturiho clona s kritickým průtokem
          CFV měří celkový průtok zředěného výfukového plynu udržováním průtoku na podmínkách nasycení (kritický průtok). Statický protitlak ve výfuku měřený systémem CFV v činnosti se musí udržovat v rozmezí ± 1,5 kPa od statického tlaku, který byl změřen při identických otáčkách a zatížení motoru bez připojení k systému CFV. Teplota směsi plynu měřená bezprostředně před CFV musí zůstat v rozmezí ± 11 K od střední provozní teploty zjištěné v průběhu zkoušky, když se nepoužije žádná kompenzace průtoku.
          HE Výměník tepla (volitelný, jestliže se použije EFC)
          Výměník tepla musí mít dostatečnou kapacitu, aby udržoval teplotu ve výše uvedených mezních hodnotách.
          EFC Elektronická kompenzace průtoku (volitelná, jestliže se použije HE)
          Jestliže se teplota na vstupu buď do PDP, nebo do CFV neudržuje ve výše uvedených mezních hodnotách, požaduje se ke kontinuálnímu měření průtoku a k řízení proporcionálního odběru vzorku v systému pro odběr částic systém kompenzace průtoku. K tomu účelu se použijí signály kontinuálně měřeného průtoku, kterými se odpovídajícím způsobem koriguje průtok vzorku filtry částic systému pro odběr vzorku částic (viz bod 2.4, obrázky 21, 22).
          DT Ředicí tunel
          Ředicí tunel:
          - musí mít dostatečně malý průměr, aby vytvářel turbulentní průtok (Reynoldsovo číslo větší než 4000), a musí být dostatečně dlouhý, aby se výfukové plyny a ředicí vzduch úplně promísily; může se použít směšovací clona,
          - musí mít u systému s jednoduchým ředěním průměr nejméně 460 mm,
          - musí mít u systému s dvojitým ředěním průměr nejméně 210 mm,
          - může být izolován.
          Výfukové plyny motoru musí být v bodě, v kterém vstupují do ředicího tunelu, usměrňovány do směru toku a musí být důkladně promíseny.
          Používá-li se jednoduché ředění, vede se do systému pro odběr vzorku částic vzorek z ředicího tunelu (bod 2.4, obrázek 21). Kapacita průtoku systémy PDP a CFV musí dostačovat k tomu, aby se teplota zředěného výfukového plynu bezprostředně před primárním filtrem částic udržovala na hodnotě nejvýše 325 K (52 °C).
          Používá-li se dvojité ředění, vede se vzorek z ředicího tunelu do sekundárního ředicího tunelu, kde se dále ředí, a pak prochází filtry k odběru vzorku (bod 2.4, obrázek 22). Kapacita průtoku systémy PDP nebo CFV musí dostačovat k tomu, aby v oblasti odběru vzorku byla udržována teplota proudu zředěného výfukového plynu v DT na hodnotě nejvýše 464 K (191 °C). Sekundární ředicí systém musí dodávat dostatek ředicího vzduchu k udržování proudu dvojitě ředěného výfukového plynu bezprostředně před primárním filtrem částic na teplotě nejvýše 325 K (52 °C).
          DAF Filtr ředicího vzduchu
          Doporučuje se, aby ředicí vzduch byl filtrován a procházel aktivním uhlím, aby se vyloučily uhlovodíky z pozadí. Na žádost výrobce motoru se odebere podle osvědčené technické praxe vzorek ředicího vzduchu k určení obsahu částic v pozadí, který se pak může odečíst od hodnot změřených ve zředěném výfukovém plynu.
          PSP Odběrná sonda vzorku částic
          Sonda je hlavní částí PTT a:
          - musí směřovat proti proudu a být instalována v bodě, kde ředicí vzduch a výfukový plyn jsou dobře promíseny, tj. v ose ředicího tunelu, ve vzdálenosti přibližně 10 průměrů tunelu po proudu od bodu, kde výfukový plyn vstupuje do ředicího tunelu,
          - musí mít vnitřní průměr nejméně 12 mm,
          - může být vyhřívána na teplotu stěny nepřekračující 325 K (52 °C) přímým ohřevem nebo předehřátím ředicího vzduchu za předpokladu, že teplota vzduchu před vstupem výfukového plynu do ředicího tunelu nepřekračuje 325 K (52 °C);
          - může být izolována.
          2.4 Systém pro odběr vzorku částic
          Systém pro odběr vzorku částic je potřebný ke sběru částic na filtru částic. U systému s ředěním části toku a s odběrem celkového vzorku, při kterém prochází celý vzorek zředěného výfukového plynu filtry, tvoří obvykle ředicí systém (bod 2.2, obrázky 14, 18) a odběrný systém integrální celek. U systému s ředěním části toku a s odběrem dílčího vzorku nebo systému s ředěním plného toku, při kterém prochází filtry jen část zředěného výfukového plynu, tvoří obvykle ředicí systém (bod 2.2, obrázky 11, 12, 13, 15, 16, 17, 19; bod 2.3, obrázek 20) a odběrný systém oddělené celky.
          V této směrnici se pokládá systém s dvojitým ředěním (obrázek 22) u systému s ředěním plného toku za zvláštní modifikaci typického systému pro odběr vzorku částic podle obrázku 21. Systém s dvojitým ředěním obsahuje všechny podstatné části systému pro odběr vzorku částic, jako jsou držáky filtrů a odběrné čerpadlo, a kromě toho některé vlastnosti týkající se ředění, jako je dodávka ředicího vzduchu a sekundární ředicí tunel.
          Aby se předešlo každému ovlivňování regulačního okruhu, doporučuje se, aby odběrné čerpadlo bylo v chodu po celou dobu postupu zkoušky. U metody jediného filtru se musí používat systém s obtokem, aby vzorek procházel odběrnými filtry v požadovaných časech. Rušivý vliv přepínacího postupu na regulační okruhy se musí minimalizovat.
          Obrázek 21
          Systém pro odběr vzorku částic
          +++++ TIFF +++++
          z ředicího tunelu DTviz obrázky 11 až 20volitelněz EGAneboz PDPneboz CFVneboz GFUEL
          Vzorek zředěného výfukového plynu se odebírá odběrným čerpadlem P z ředicího tunelu DT systému s ředěním dílčího toku nebo ze systému s ředěním plného toku odběrnou sondou částic PSP a přenosovou trubkou částic PTT. Vzorek prochází držákem (držáky) filtrů FH, v nichž jsou filtry k odběru vzorku částic. Průtok vzorku je řízen regulátorem průtoku FC3. Jestliže se použije elektronická kompenzace EFC (viz obrázek 20), použije se průtok zředěného výfukového plynu jako řídicí signál pro FC3.
          Obrázek 22
          Systém s dvojitým ředěním (jen u systémů s plným tokem)
          +++++ TIFF +++++
          z ředicího tunelu DT, viz obrázek 20PDPnebo CFVvolitelnýodvzdušnění
          Vzorek zředěného výfukového plynu se vede z ředicího tunelu DT systému s ředěním plného toku odběrnou sondou částic PSP a přenosovou trubkou částic PTT do sekundárního ředicího tunelu SDT, kde se ještě jednou ředí. Vzorek pak prochází držákem (držáky) filtrů FH, v nichž jsou filtry k odběru vzorku částic. Průtok ředicího vzduchu je obvykle konstantní, kdežto průtok vzorku je řízen regulátorem průtoku FC3. Jestliže se použije elektronická kompenzace EFC (viz obrázek 20), použije se celkový průtok zředěného výfukového plynu jako řídicí signál pro FC3.
          2.4.1 Popis částí na obrázcích 21 a 22
          PTT Přenosová trubka částic (obrázky 21, 22)
          Délka přenosové trubky částic nesmí překračovat 1020 mm a trubka musí být co nejkratší. Do délky se v určitých případech (tj. u systémů s ředěním dílčího toku a s odběrem dílčího vzorku a u systémů s ředěním plného toku) musí započítat délka odběrných sond (SP, ISP, PSP, viz body 2.2 a 2.3).
          Tyto rozměry platí pro:
          - systém s ředěním části toku a s odběrem dílčího vzorku a pro systém plného toku s jednoduchým ředěním od vstupu sondy (SP, ISP, PSP) k držáku filtru,
          - systém s ředěním části toku a s odběrem celkového vzorku od konce ředicího tunelu k držáku filtru,
          - systém plného toku s dvojitým ředěním od vstupu sondy (PSP) k sekundárnímu ředicímu tunelu.
          Přenosová trubka:
          - může být vyhřívána na teplotu stěny nejvýše 325 K (52 °C) přímým ohřevem nebo předehřátím ředicího vzduchu za předpokladu, že teplota vzduchu před vstupem výfukového plynu do ředicího tunelu nepřekročí teplotu 325 K (52 °C);
          - může být izolována.
          SDT Sekundární ředicí tunel (obrázek 22)
          Sekundární ředicí tunel by měl mít průměr nejméně 75 mm a měl by mít dostatečnou délku, aby dvojitě zředěný vzorek v něm setrval nejméně 0,25 s. Držák primárního filtru FH musí být umístěn ve vzdálenosti nejvýše 300 mm od výstupu z SDT.
          Sekundární ředicí tunel:
          - může být vyhříván na teplotu stěny nejvýše 325 K (52 °C) přímým ohřevem nebo předehřátím ředicího vzduchu za předpokladu, že teplota vzduchu před vstupem výfukového plynu do ředicího tunelu nepřekročí teplotu 325 K (52 °C),
          - může být izolován.
          FH Držák (držáky) filtru (obrázky 21, 22)
          Pro primární a koncový filtr se může použít jediné pouzdro filtru nebo oddělená pouzdra filtru. Musí být splněny požadavky uvedené v bodě 4.1.3 dodatku 4 k příloze III.
          Držák (držáky) filtru:
          - může být vyhříván na teplotu stěny nejvýše 325 K (52 °C) přímým ohřevem nebo předehřátím ředicího vzduchu za předpokladu, že teplota vzduchu před vstupem výfukového plynu do ředicího tunelu nepřekročí teplotu 325 K (52 °C),
          - může být izolován.
          P Odběrné čerpadlo (obrázky 21, 22)
          Jestliže se nepoužije korekce průtoku regulátorem FC3, musí být odběrné čerpadlo vzorku částic umístěno v dostatečné vzdálenosti od tunelu, aby se teplota vstupujícího plynu udržovala konstantní (± 3 K).
          DP Čerpadlo ředicího vzduchu (obrázek 22)
          Čerpadlo ředicího vzduchu musí být umístěno tak, aby přiváděný sekundární ředicí vzduch měl teplotu 298 K ± 5 K (25 °C ± 5 °C), jestliže ředicí vzduch není předehříván.
          FC3 Regulátor průtoku (obrázky 21, 22)
          Jestliže není dostupný jiný prostředek, musí se pro kompenzaci kolísání teploty a protitlaku toku vzorku částic v průběhu cesty tohoto vzorku použít regulátor průtoku. Regulátor průtoku se požaduje v případě použití elektronické kompenzace průtoku EFC (viz obrázek 20).
          FM3 Průtokoměr (obrázky 21, 22)
          Jestliže není použita korekce průtoku regulátorem FC3, musí být plynoměr nebo zařízení k měření průtoku umístěno v dostatečné vzdálenosti od odběrného čerpadla, aby se teplota vstupujícího vzduchu udržovala konstantní (± 3 K).
          FM4 Průtokoměr (obrázek 22)
          Plynoměr nebo zařízení k měření průtoku ředicího vzduchu musí být umístěny tak, aby teplota vstupujícího vzduchu zůstávala na 298 K ± 5 K (25 °C ± 5 °C).
          BV Kulový ventil (volitelný)
          Kulový ventil nesmí mít vnitřní průměr menší, než je vnitřní průměr přenosové trubky částic PTT, a musí mít dobu přepínání kratší než 0,5 s.
          Poznámka:
          Jestliže je teplota okolí v blízkosti PSP, PTT, SDT a FH nižší než 293 K (20 °C), je třeba učinit opatření, aby nedocházelo ke ztrátám částic na chladných stěnách těchto částí. Proto se u těchto částí doporučuje vyhřívání nebo izolování v mezích uvedených v odpovídajících popisech. Také se doporučuje, aby teplota na vstupní části filtru v průběhu odběru vzorku byla nejméně 293 K (20 °C).
          Při vysokých zatíženích motoru mohou být výše uvedené části chlazeny neagresivními prostředky, jako je oběhový ventilátor, dokud není teplota chladicího média nižší než 293 K (20 °C).
          3. URČENÍ KOUŘE
          3.1 Úvod
          V bodech 3.2 a 3.3 a v obrázcích 23 a 24 jsou podrobné popisy doporučených systémů opacimetrů. Protože různá uspořádání mohou dávat rovnocenné výsledky, nepožaduje se přesná shoda s obrázky 23 a 24. K získávání dalších informací a ke koordinaci funkcí částí systému se mohou použít doplňkové části, jako jsou přístroje, ventily, elektromagnety, čerpadla a spínače. Jiné části, které nejsou potřebné k udržování přesnosti v některých systémech, se mohou vyloučit, jestliže je jejich vyloučení podloženo osvědčeným technickým úsudkem.
          Měření je založeno na principu, že světlo prochází specifickou vzdálenost v měřeném kouři a podíl světla, který dopadne na snímač slouží k vyhodnocení opacitních vlastností kouře. Měření kouře závisí na konstrukci přístroje a může se provést ve výfukové trubce (plnoprůtočný opacimetr zapojený sériově), na konci výfukové trubky (koncový plnoprůtočný opacimetr) nebo odběrem vzorku z výfukové trubky (opacimetr s dílčím tokem). K určení koeficientu absorpce světla ze signálu opacity musí výrobce přístroje udat délku optické dráhy.
          3.2 Plnoprůtočný opacimetr
          Mohou se použít dva základní druhy plnoprůtočných opacimetrů (obrázek 23). Opacimetrem zapojeným sériově se měří opacita plného toku výfukového plynu ve výfukové trubce. U tohoto druhu opacimetru je efektivní délka optické dráhy funkcí konstrukce opacimetru.
          Koncovým opacimetrem se měří opacita plného toku výfukového plynu při jeho výstupu z výfukové trubky. U tohoto druhu opacimetru je efektivní délka optické dráhy funkcí konstrukce výfukové trubky a vzdálenosti mezi koncem výfukové trubky a opacimetrem.
          Obrázek 23
          Plnoprůtočný opacimetr
          +++++ TIFF +++++
          (volitelný)
          3.2.1 Popis částí na obrázku 23
          EP Výfuková trubka
          U opacimetru zapojeného sériově se průměr výfukové trubky nesmí měnit ve vzdálenosti rovné trojnásobku průměru výfukové trubky před oblastí měření a za ní. Jestliže je průměr měřicí oblasti větší než průměr výfukové trubky, doporučuje se trubka, která se před měřicí oblastí zvolna zužuje.
          U koncového opacimetru musí mít posledních 0,6 m výfukové trubky kruhový průřez a nesmí obsahovat kolena a ohyby. Konec výfukové trubky musí být uříznut kolmo k její ose. Opacimetr se musí instalovat do osy proudu výfukového plynu ve vzdálenosti (25 ± 5) mm od konce výfukové trubky.
          OPL Délka optickédráhy
          Délka kouřem zacloněné optické dráhy mezi světelným zdrojem opacimetru a snímačem, korigovaná podle potřeby na nestejnoměrnost působenou gradienty hustoty a okrajovými účinky. Délku optické dráhy musí udat výrobce přístroje, přičemž je třeba dbát na všechna opatření proti usazování sazí (např. proplachování vzduchem). Jestliže délka optické dráhy není známa, musí se určit podle normy ISO IDS 11614, bod 11.6.5. Ke správnému určení délky optické dráhy se požaduje rychlost výfukového plynu nejméně 20 m/s.
          LS Světelný zdroj
          Světelným zdrojem musí být žárovka s teplotou barvy v rozsahu od 2800 do 3250 K nebo dioda vyzařující zelené světlo (LED) se spektrálním vrcholem mezi 550 a 570 nm. Světelný zdroj musí být chráněn proti usazování sazí prostředky, které neovlivňují délku optické dráhy více, než jsou meze stanovené výrobcem.
          LD Detektor světla
          Detektorem musí být fotobuňka nebo fotodioda (s filtrem, jestliže je to potřebné). Je-li světelným zdrojem žárovka, musí mít snímač vrchol spektrální odezvy podobný fototopické křivce lidského oka (maximální odezvu) v rozsahu od 550 do 570 nm a méně než 4 % uvedené maximální odezvy pod 430 nm a nad 680 nm. Detektor světla musí být chráněn proti usazování sazí prostředky, které neovlivňují délku optické dráhy více, než jsou meze stanovené výrobcem.
          CL Kolimační čočka
          Vyzářené světlo se kolimuje do svazku o průměru nejvýše 30 mm. Paprsky světelného svazku musí být rovnoběžné v mezích 3° od optické osy.
          T1 Snímač teploty (volitelný)
          Teplota výfukového plynu se může monitorovat v průběhu zkoušky.
          3.3 Opacimetr s dílčím tokem
          U opacimetru s dílčím tokem (obrázek 24) se odebírá reprezentativní vzorek výfukového plynu z výfukové trubky a prochází přenosovým vedením do měřicí komory. U tohoto druhu opacimetru závisí efektivní délka optické dráhy funkcí na konstrukci opacimetru. Časy odezvy, které jsou uvedeny v následujícím bodě, platí pro nejmenší průtok opacimetrem uvedený výrobcem přístroje.
          Obrázek 24
          Opacimetr s dílčím tokem
          +++++ TIFF +++++
          výfukový plyn(volitelné)
          3.3.1 Popis částí na obrázku 24
          EP Výfuková trubka
          Výfuková trubka musí být trubka přímá od vstupu sondy v délce nejméně 6 průměrů trubky proti směru proudění a 3 průměry trubky ve směru proudění.
          SP Odběrná sonda
          Odběrnou sondou je otevřená trubka směřující proti proudu plynu, která je instalovaná přibližně v ose výfukové trubky. Její vzdálenost od stěn výfukové trubky musí být nejméně 5 mm. Průměrem sondy musí být zajištěn odběr reprezentativního vzorku a dostatečný průtok opacimetrem.
          TT Přenosová trubka
          Přenosová trubka musí:
          - být co nejkratší a zajišťovat na vstupu měřicí komory teplotu výfukového plynu na hodnotě 373 K ± 30 K (100 °C ± 30 °C),
          - mít teplotu stěny dostatečně nad rosným bodem výfukového plynu, aby se zabránilo kondenzaci,
          - mít v celé své délce stejný průměr jako odběrná sonda,
          - mít při minimálním průtoku přístrojem dobu odezvy určenou podle bodu 5.2.4 dodatku 4 k příloze III kratší než 0,05 s a
          - nesmí významně ovlivňovat maximální hodnotu kouře.
          FM Průtokoměr
          Přístroj ke správnému určení průtoku do měřicí komory. Nejmenší a největší průtok určí výrobce přístroje, průtoky musí být takové, aby byly splněny požadavky na dobu odezvy TT a požadavky na délku optické dráhy. Jestliže se použije odběrné čerpadlo P, může být průtokoměr v jeho blízkosti.
          MC Měřicí komora
          Měřicí komora musí mít neodrazivý vnitřní povrch nebo rovnocenné optické vlastnosti. Rozptýlené světlo dopadající na detektor a vzniklé vnitřními odrazy difuzními vlivy musí být co nejmenší.
          Tlak plynu v měřicí komoře se smí lišit od atmosférického tlaku nejvýše o 0,75 kPa. Není-li to z konstrukčních důvodů možné, musí se údaje opacimetru převést na atmosférický tlak.
          Teplota stěny měřicí komory musí být nastavena na hodnotu mezi 343 K (70 °C) a 373 K (100 °C) s dovolenou odchylkou ±5 K, avšak v každém případě dostatečně nad rosný bod výfukového plynu, aby nedocházelo ke kondenzaci. Měřicí komora musí být vybavena vhodnými zařízeními k měření teploty.
          OPL Délka optické dráhy
          Délka optické dráhy, kterou mezi světelným zdrojem opacimetru a snímačem zacloňuje kouř, v případě potřeby korigovaná na nestejnoměrnost působenou gradienty hustoty a okrajovými účinky. Délku optické dráhy musí udat výrobce přístroje, přičemž je třeba dbát všech opatření proti usazování sazí (např. proplachování vzduchem). Jestliže délka optické dráhy není známa, musí se určit podle normy ISO IDS 11614, bod 11.6.5.
          LS Světelný zdroj
          Světelným zdrojem musí být žárovka s teplotou barvy v rozsahu od 2800 do 3250 K nebo dioda vyzařující zelené světlo (LED) se spektrálním vrcholem mezi 550 a 570 nm. Světelný zdroj musí být chráněn proti usazování sazí prostředky, které neovlivňují délku optické dráhy více, než jsou meze uvedené výrobcem.
          LD Detektor světla
          Detektorem musí být fotobuňka nebo fotodioda (s filtrem, jestliže je to potřebné). Je-li světelným zdrojem žárovka, musí mít snímač vrchol spektrální odezvy podobný fototopické křivce lidského oka (maximální odezvu) v rozsahu od 550 do 570 nm a do méně než 4 % uvedené maximální odezvy pod 430 nm a nad 680 nm. Detektor světla musí být chráněn proti usazování sazí prostředky, které neovlivňují délku optické dráhy více, než jsou meze uvedené výrobcem.
          CL Kolimační čočka
          Vyzářené světlo se kolimuje do svazku o průměru nejvýše 30 mm. Paprsky světelného svazku musí být rovnoběžné v mezích 3° od optické osy.
          T1 Snímač teploty
          Pro monitorování teploty výfukového plynu ve vstupu měřicí komory.
          P Odběrné čerpadlo (volitelné)
          Pro přenos vzorku plynu měřicí komorou může být použito odběrné čerpadlo za měřicí komorou ve směru proudění.
          --------------------------------------------------
          PŘÍLOHA VI
          - schválení typu [1]
          - rozšíření schválení typu [1]
          0 Obecně
          0.1 Značka vozidla / samostatného technického celku/konstrukční části [1]:
          0.2 Označení vozidla / samostatného technického celku (typu motoru / rodiny motorů) / konstrukční části [1] užívané výrobcem:
          0.3 Kód typu vozidla / samostatného technického celku (typu motoru / rodiny motorů) / konstrukční části [1] užívaný výrobcem:
          0.4 Kategorie vozidla:
          0.5 Kategorie motoru: vznětový / na NG / na LPG / na ethanol [1]:
          0.6 Jméno a adresa výrobce:
          0.7 Jméno a adresa případného zástupce výrobce:
          1 Případný stručný popis: viz přílohu I:
          2 Technická zkušebna provádějící zkoušky:
          3 Datum zkušebního protokolu:
          4 Číslo zkušebního protokolu:
          5 Případný důvod (důvody) rozšíření schválení typu:
          6 Případné poznámky: viz přílohu I:
          7 Místo:
          8 Datum:
          9 Podpis:
          10 Přiložen je seznam dokumentace schválení typu uložené u schvalovacího orgánu, kterou lze obdržet na požádání.
          +++++ TIFF +++++
          [1] Nehodící se škrtněte.
          --------------------------------------------------
          Dodatek
          k certifikátu ES schválení typu č. … pro typ vozidla / samostatného technického celku / konstrukční části [1]
          1 Stručný popis
          1.1 Údaje, které je potřebné uvést ke schválení typu vozidla se zamontovaným motorem:
          1.1.1 Značka motoru (název podniku):
          1.1.2 Typ a obchodní název (uveďte případné varianty):
          1.1.3 Kód výrobce vyznačený na motoru:
          1.1.4 Případná kategorie vozidla:
          1.1.5 Kategorie motoru: vznětový / na NG / na LPG / na ethanol (1)
          1.1.6 Jméno a adresa výrobce:
          1.1.7 Jméno a adresa případného zástupce výrobce:
          1.2 Jestliže motor uvedený v bodě 1.1 byl schválen jako typ samostatného technického celku:
          1.2.1 číslo schválení typu pro motor / rodinu motorů (1):
          1.3 Údaje, které je potřebné uvést ke schválení typu pro motor / rodinu motorů (1) jako samostatného technického celku (podmínky, které se musí dodržet při montáži motoru do vozidla):
          1.3.1 Maximální a minimální podtlak v sání: kPa
          1.3.2 Maximální přípustný protitlak: kPa
          1.3.3 Objem výfukového systému: cm3
          1.3.4 Příkon pomocných zařízení potřebných pro provoz motoru:
          1.3.4.1 Volnoběh: kW; Dolní otáčky: kW; Horní otáčky: kW
          Otáčky A: kW; Otáčky B: kW; Otáčky C: kW;
          Referenční otáčky: kW
          1.3.5 Případné omezení užití:
          1.4 Hodnoty emisí motoru / základního motoru (1)
          1.4.1 Zkouška ESC (pokud připadá v úvahu):
          CO: g/kWh
          THC: g/kWh
          NOx: g/kWh
          PT: g/kWh
          1.4.2 Zkouška ELR (pokud připadá v úvahu):
          Hodnota kouře: m-1
          1.4.3 Zkouška ETC (pokud připadá v úvahu):
          CO: g/kWh
          THC: g/kWh (1)
          NMHC: g/kWh (1)
          CH4: g/kWh (1)
          NOx: g/kWh (1)
          PT: g/kWh (1)
          +++++ TIFF +++++
          [1] Nehodící se škrtněte.
          --------------------------------------------------
          PŘÍLOHA VII
          PŘÍKLAD POSTUPU VÝPOČTU
          1. ZKOUŠKA ESC
          1.1 Plynné emise
          Údaje z měření, které jsou potřebné k výpočtu výsledků jednotlivého režimu, jsou uvedeny dále. V tomto příkladu byly měřeny CO a NOx v suchém stavu, HC ve vlhkém stavu. Koncentrace HC je uvedena v ekvivalentu propanu (C3) a musí se k získání ekvivalentu C1 násobit třemi. Postup výpočtu je pro ostatní režimy stejný.
          P (kW) | Ta (K) | Ha (g/kg) | GEXH (kg) | GAIRW (kg) | GFUEL (kg) | HC (ppm) | CO (ppm) | NOx (ppm) |
          82,9 | 294,8 | 7,81 | 563,38 | 545,29 | 18,09 | 6,3 | 41,2 | 495 |
          Výpočet korekčního faktoru KW,r pro převedení ze suchého stavu na vlhký (bod 4.2 dodatku 1 k příloze III):
          FFH = 1,9691 + 18,09545,29 = 1,9058 a KW2 = 1,608 × 7,811000 + 1,608 × 7,81 = 0,0124
          KW,r = 1 - 1,9058 × 18,09541,06 - 0,0124 = 0,9239
          Výpočet koncentrací ve vlhkém stavu:
          CO = 41,2 × 0,9239 = 38,1 ppm
          NOx = 495 × 0,9239 = 457 ppm
          Výpočet korekčního faktoru vlhkosti KH,D pro NOx (bod 4.3 dodatku 1 k příloze III):
          A = 0,309 × 18,09/541,06 - 0,0266 = -0,0163
          B = - 0,209 × 18,09/541,06 + 0,00954 = 0,0026
          KH,D = 11-0,0163 × 7,81-10,71 + 0,0026 × 294,8-298 = 0,9625
          Výpočet hmotnostních průtoků emisí (bod 4.4 dodatku 1 k příloze III):
          NOx = 0,001587 × 457 × 0,9625 × 563,38 = 393,27 g/h
          CO = 0,000966 × 38,1 × 563,38 = 20,735 g/h
          HC = 0,000479 × 6,3 × 3 × 563,38 = 5,100 g/h
          Výpočet specifických emisí (bod 4.5 dodatku 1 k příloze III):
          Následující příklad výpočtu je uveden pro CO; postup výpočtu pro ostatní složky je stejný.
          Hmotnostní průtoky emisí jednotlivých režimů se násobí odpovídajícími váhovými faktory, jak je uvedeno v bodě 2.7.1 dodatku 1 k příloze III, a k výpočtu středního hmotnostního průtoku emisí za cyklus se sečte:
          CO = 6,7 × 0,15 + 24,6 × 0,08 + 20,5 × 0,10 + 20,7 × 0,10 + 20,6 × 0,05 + 15,0 × 0,05 + 19,7 × 0,05 + 74,5 × 0,09 + 31,5 × 0,10 + 81,9 × 0,08 + 34,8 × 0,05 + 30,8 × 0,05 + 27,3 × 0,05= 30,91 g/h
          Výkon motoru při jednotlivých režimech se násobí odpovídajícími váhovými faktory, jak je uvedeno v bodě 2.7.1 dodatku 1 k příloze III a k výpočtu středního výkonu za cyklus se sečte:
          Pn = 0,1 × 0,15 + 96,8 × 0,08 + 55,2 ×0,10 + 82,9 × 0,10 + 46,8 × 0,05 + 70,1 × 0,05 + 23,0 × 0,05 + 114,3 × 0,09 + 27,0 × 0,10 + 122,0 × 0,08 + 28,6 × 0,05 + 87,4 × 0,05 + 57,9 × 0,05 = 60,006 kW
          CO‾= 30,9160,006 = 0,0515 g/kWh
          Výpočet specifických emisí NOx v náhodně zvoleném zkušebním bodu (bod 4.6.1 dodatku 1 k příloze III):
          Předpokládá se, že v náhodně zvoleném zkušebním bodu byly určeny tyto hodnoty:
          nZ = 1600 min-1
          MZ = 495 Nm
          NOx mass.Z = 487,9 g/h (vypočteno podle předcházejících vzorců)
          P(n)Z = 83 kW
          NOx,Z = 487,9/83 = 5,878 g/kWh
          Určení emisní hodnoty ze zkušebního cyklu (bod 4.6.2 dodatku 1 k příloze III):
          Předpokládají se tyto hodnoty čtyř obklopujících režimů zkoušky ESC:
          nRT | nSU | ER | ES | ET | EU | MR | MS | MT | MU |
          1368 | 1785 | 5,943 | 5,565 | 5,889 | 4,973 | 515 | 460 | 681 | 610 |
          ETU = 5,889 + 4,973-5,889 × 1600-1368 / 1785-1368 = 5,377 g/kWh
          ERS = 5,943 + 5,565-5,943 × 1600-1368 / 1785-1368 = 5,732 g/kWh
          MTU = 681 + 601-681 × 1600-1368 / 1785-1368 = 641,3 Nm
          MRS = 515 + 460-515 × 1600-1368 / 1785-1368 = 484,3 Nm
          EZ = 5,732 + 5,377-5,732 × 495-484,3 / 641,3-484,3 = 5,708 g/kWh
          Porovnání hodnot emisí NOx (bod 4.6.3 dodatku 1 k příloze III):
          NOx diff = 100 × 5,878-5,708 / 5,708 = 2,98 %
          1.2 Emise částic
          Měření částic se zakládá na principu odběru částic v průběhu celého cyklu, avšak vzorek a průtoky (MSAM a GEDF) se určují v průběhu jednotlivých režimů. Výpočet GEDF závisí na použitém systému. V následujících příkladech se použije systém s měřením CO2 a metoda bilance uhlíku a systém s měřením průtoku. Když se použije systém s ředěním plného toku, měří se GEDF přímo zařízením CVS.
          Výpočet GEDF (body 5.2.3 a 5.2.4 dodatku 1 k příloze III):
          Předpokládají se následující údaje z měření režimu 4. Postup výpočtu je pro ostatní režimy stejný.
          GEXH (kg/h) | GFUEL (kg/h) | GDILW (kg/h) | GTOTW (kg/h) | CO2D (%) | CO2A (%) |
          334,02 | 10,76 | 5,4435 | 6,0 | 0,657 | 0,040 |
          a) metoda bilance uhlíku
          GEDFW = 206,5 × 10,760,657-0,040 = 3601,2 kg/h
          b) metoda měření průtoku
          q = 6,06,0-5,4435 = 10,78
          GEDFW = 334,02 × 10,78 = 3600,7 kg/h
          Výpočet hmotnostního průtoku (bod 5.4 dodatku 1 k příloze III):
          Průtoky GEDFW jednotlivých režimů se násobí odpovídajícími váhovými faktory, jak je uvedeno v bodě 2.7.1 dodatku 1 k příloze III, a k určení střední hodnoty GEDF za celý cyklus se sečtou. Celkový průtok vzorku MSAM se určí součtem průtoků vzorku jednotlivých režimů.
          G‾EDFW = 3567 × 0,15 + 3592 × 0,08 + 3611 × 0,10 + 3600 × 0,10 + 3618 × 0,05 + 3600 × 0,05 + 3640 × 0,05 + 3614 × 0,09 + 3620 × 0,10 + 3601 × 0,08 + 3639 × 0,05 + 3582 × 0,05 + 3635 × 0,05= 3604,6 kg/h
          MSAM = 0,226 + 0,122 + 0,151 + 0,152 + 0,076 + 0,076 + 0,076 + 0,136 + 0,151 + 0,121 + 0,076 + 0,076 + 0,075= 1,515 kg
          Předpokládá se hmotnost částic na filtrech 2,5 mg a pak je
          PTmass = 2,51,515 × 360,41000 = 5,948 g/h
          Korekce pozadím (volitelná)
          Předpokládá se jedno měření pozadí s následujícími hodnotami. Výpočet ředicího faktoru DF je totožný s bodem 3.1 této přílohy a není zde uveden.
          Md = 0,1 mg; MDIL = 1,5 kg
          Součet DF = 1-1/119,15 × 0,15 + 1-1/8,89 × 0,08 + 1-1/14,75 × 0,10 + 1-1/10,10 × 0,10 + 1-1/18,02 × 0,05 + 1-1/12,33 × 0,05 + 1-1/32,18 × 0,05 + 1-1/6,94 × 0,09 + 1-1/25,19 × 0,10 + 1-1/6,12 × 0,08 + 1-1/20,87 × 0,05 + 1-1/8,77 × 0,05 + 1-1/12,59 × 0,05 = 0,923
          PTmass = 2,51,515-0,11,5 × 0,923 × 3604,61000 = 5,726 g/h
          Výpočet specifických emisí (bod 5.5 dodatku 1 k příloze III):
          Pn = 0,1 × 0,15 + 96,8 × 0,08 + 55,2 × 0,10 + 82,9 × 0,10 + 46,8 × 0,05 + 70,1 × 0,05 + 23,0 × 0,05 + 114,3 × 0,09 + 27,0 × 0,10 + 122,0 × 0,08 + 28,6 × 0,05 + 87,4 × 0,05 + 57,9 × 0,05 = 60,006 kW
          PT‾ = 5,94860,006 = 0,099 g/kWh
          s korekcí pozadím PT‾ = 5,726/60,006 = 0,095 g/kWh
          Výpočet specifického váhového faktoru (bod 5.6 dodatku 1 k příloze III):
          Za předpokladu výše vypočtených hodnot pro režim 4 je
          WFE,i = 0,152 × 3604,6/1,515 × 3600,7 = 0,1004
          Tato hodnota je v požadovaných mezích 0,10 ± 0,003.
          2. ZKOUŠKA ELR
          Protože filtrování podle Bessela je v evropském právu týkajícím se výfukových plynů úplně novým postupem k zjišťování středních hodnot, je dále uveden výklad Besselova filtru, příklad vytvoření Besselova algoritmu a příklad výpočtu konečné hodnoty kouře. Konstanty Besselova algoritmu závisejí jen na konstrukci opacimetru a četnosti sběru dat systému pro sběr dat. Doporučuje se, aby výrobce opacimetru udal konečné konstanty Besselova filtru pro různé četnosti sběru dat a aby zákazník používal tyto konstanty k vytvoření Besselova algoritmu a k výpočtu hodnot kouře.
          2.1 Obecné poznámky k Besselovu filtru
          Vzhledem k rušivým vlivům v oblasti vysokých frekvencí vykazuje obvykle křivka nezpracovaného signálu opacity velký rozptyl. Pro odstranění těchto rušení při vysokých frekvencích se pro zkoušku ELR požaduje Besselův filtr. Sám Besselův filtr je rekurzivní dolní propust druhého řádu, která zaručuje nejrychlejší nárůst signálu bez překmitnutí.
          Za předpokladu sloupce surového výfukového plynu v reálném čase ve výfukové trubce udává každý opacimetr křivku opacity s časovým zpožděním a různě změřenou. Zpoždění a průběh změřené křivky opacity závisí primárně na geometrii měřicí komory opacimetru, včetně odběrných potrubí výfukového plynu, a na čase potřebném ke zpracování signálu v elektronice opacimetru. Hodnoty, které charakterizují tyto dva vlivy, se nazývají doba fyzikální a elektrické odezvy, odezvy představují individuální filtr pro každý typ opacimetru.
          Cílem použití Besselova filtru je zaručit jednotnou celkovou filtrační charakteristiku celého systému opacimetru, která se skládá z:
          - doby fyzikální odezvy opacimetru tp,
          - doby elektrické odezvy opacimetru te,
          - doby odezvy filtru použitého Besselova filtru tF.
          Výsledná celková doba odezvy systému tAver se vypočítá ze vzorce:
          tAver = tF2 + tp2 + te2
          a musí být stejná pro všechny druhy opacimetrů, aby udávaly tutéž hodnotu kouře. Proto je třeba vytvořit Besselův filtr tak, aby doba odezvy filtru tF zároveň s dobou fyzikální odezvy tp a s dobou elektrické odezvy te jednotlivého opacimetru daly požadovanou celkovou dobu odezvy tAver. Protože tp a te jsou hodnoty dané pro každý jednotlivý opacimetr a tAverje definována v této směrnici jako rovna 1,0, vypočte se tF takto:
          tF = tAver2 + tp2 + te2
          Podle definice je doba odezvy filtru tF dobou nárůstu filtrovaného výstupního signálu mezi hodnotami 10 % a 90 % skokového vstupního signálu. Proto se musí vstupní frekvence Besselova filtru iterovat tak, aby se doba odezvy Besselova filtru přizpůsobila požadované době nárůstu.
          Obrázek a
          Křivky skokového vstupního signálu a filtrovaného výstupního signálu
          +++++ TIFF +++++
          čas [s]skokový vstupní signálsignál [-]výstupní signál filtrovaný podle Bessela
          Na obrázku a jsou znázorněny křivky skokového vstupního signálu a výstupního signálu filtrovaného podle Bessela a rovněž doba odezvy Besselova filtru tF.
          Vytvoření konečného algoritmu Besselova filtru je vícekrokový postup, který vyžaduje více iteračních cyklů. Schéma iteračního postupu je znázorněno v tomto diagramu.
          +++++ TIFF +++++
          charakteristiky opacimetrutp, tc [s]regulacetAver [s]frekvence systému pro odběr dat[Hz]požadovaná celková doba odezvy Besselova filtru tFvytvoření algoritmu Besselova filtrufc, E, Kpoužití Besselova filtru na skokový vstupt(10%), t(90%)výpočet iterované doby odezvy filtrutF,iter = t(90%) – t(10%)rozdíl mezi tF a tF,iterΔ = tF,iter - tFtFkontrola iteračního kriterianeanokonečné konstanty a algoritmus Besselova filtruYi = …iteracepřizpůsobení mezního kmitočtufc,új = fc × (1 + ∆)fc = fc,neskrok 1krok 2krok 3krok 4krok 5krok 6krok 7|∆| ≤ 0,01
          2.2 Výpočet Besselova algoritmu
          V tomto příkladu se vytváří Besselův algoritmus ve více krocích podle výše uvedeného iteračního postupu, který je uveden v bodě 6.1 dodatku 1 k příloze III.
          Pro opacimetr a systém pro sběr dat se předpokládají tyto vlastnosti:
          - doba fyzikální odezvy tp…0,15 s,
          - doba elektrické odezvy te…0,05 s,
          - doba celkové odezvy tAver…1,00 s (podle definice v této směrnici),
          - četnost sběru dat 150 Hz.
          Krok 1 Požadovaná doba odezvy Besselova filtru tF:
          tF = 12-0,152 + 0,052 = 0,987421 s
          Krok 2 Odhad mezní frekvence a výpočet Besselových konstant E, K pro první iteraci:
          fc = 3,141510 × 0,987421 = 0,318152 Hz
          Δt = 1/150 = 0,006667 s
          Ω = 1tan 3,1415 × 0,006667 × 0,318152 = 150,07664
          E = 11 + 150,076644 × 3 × 0,618034 + 0,618034 + 150,0766442 = 7,07948 × 10-5
          K = 2 × 7,07948 × 10-5 × 0,618034 × 150,0766442-1-1 = 0,970783
          Z toho vychází Besselův algoritmus:
          Yi = Yi-1 + 7,07948 E-5 × Si + 2 × Si-1 + Si-2-4 × Yi-2 + 0,970783 × Yi-1-Yi-2
          kde Si představuje hodnoty skokového vstupního signálu (buď "0", nebo "1") a Yi představuje hodnoty filtrovaného výstupního signálu.
          Krok 3 Použití Besselova filtru na skokový vstup:
          Doba odezvy Besselova filtru tF je definována jako nárůst doby filtrovaného výstupního signálu mezi hodnotami 10 % a 90 % skokového vstupního signálu. K určení časů 10 % (t10) a 90 % (t90) výstupního signálu se musí na skokový vstup použít Besselův filtr s pomocí výše uvedených hodnot fc, E a K.
          Čísla indexů, čas a hodnoty skokového vstupního signálu a z nich vycházející hodnoty filtrovaného výstupního signálu pro první a druhou iteraci jsou uvedeny v tabulce B. Body, které jsou přilehlé k t10 a t90, jsou vyznačeny tučnými číslicemi.
          V první iteraci v tabulce B se hodnota 10 % nalézá mezi čísly indexů 30 a 31 a hodnota 90 % se nalézá mezi čísly indexů 191 a 192. K výpočtu tF,iter se přesné hodnoty t10 a t90 určí lineární interpolací mezi přilehlými měřicími body takto:
          t10 = tlower + Δt × 0,1-outlower/outupper-outlower
          t90 = tlower + Δt × 0,9-outlower/outupper-outlower
          kde outupper a outlower jsou přilehlé body výstupního signálu filtrovaného podle Bessela a tlower je čas uvedený v tabulce B pro dočasný přilehlý bod.
          t10 = 0,200000 + 0,006667 × 0,1-0,099208/0,104794-0,099208 = 0,200945 s
          t90 = 0,273333 + 0,006667 × 0,9-0,899147/0,901168-0,899147 = 1,276147 s
          Krok 4 Doba odezvy filtru prvního iteračního cyklu:
          tF,iter = 1,276147-0,200945 = 1,075202 s
          Krok 5 Rozdíl mezi požadovanou a získanou dobou odezvy filtru při prvním iteračním cyklu:
          Δ = 1,075202-0,987421/0,987421 = 0,081641
          Krok 6 Kontrola iteračního kritéria:
          Požaduje se |Δ| ≤ 0,01. Protože 0,081641 > 0,01, není splněno iterační kritérium a musí se začít další iterační cyklus. Pro tento iterační cyklus se vypočte nový mezní kmitočet z fc a Δ takto:
          fc,new = 0,318152 × 1 + 0,081641 = 0,344126 Hz
          Tento nový mezní kmitočet se použije v druhém iteračním cyklu, který znovu začíná druhým krokem. Iterace se musí opakovat, dokud nejsou splněna iterační kritéria. Výsledné hodnoty první a druhé iterace jsou shrnuty v tabulce A.
          Tabulka A
          Hodnoty první a druhé iterace
          Parametr | 1. iterace | 2. iterace |
          fc | (Hz) | 0,318152 | 0,344126 |
          E | (-) | 7,07948 E-5 | 8,272777 E-5 |
          K | (-) | 0,970783 | 0,968410 |
          t10 | (s) | 0,200945 | 0,185523 |
          t90 | (s) | 1,276147 | 1,179562 |
          tF,iter | (s) | 1,075202 | 0,994039 |
          Δ | (-) | 0,081641 | 0,006657 |
          fc,new | (Hz) | 0,344126 | 0,346417 |
          Krok 7 Konečný Besselův algoritmus:
          Jakmile je splněno iterační kritérium, vypočtou se konečné konstanty Besselova filtru a konečný Besselův algoritmus podle kroku 2. V tomto případě bylo splněno iterační kritérium po druhé iteraci (Δ = 0,006657 ≤ 0,01). Konečný algoritmus se pak použije k určení středních hodnot kouře (viz bod 2.3).
          Yi = Yi-1 + 8,272777 × 10-5 × Si + 2 × Si-1 + Si-2-4 × Yi-2 + 0,968410 × Yi-1-Yi-2
          Tabulka B
          Hodnoty skokového vstupního signálu a výstupního signálu filtrovaného podle Bessela pro první a druhý iterační cyklus
          Index i [-] | Čas [s] | Skokový vstupní signál Si [-] | Filtrovaný výstupní signál Yi [-] |
          1. iterace | 2. iterace |
          - 2 | - 0,013333 | 0 | 0,000000 | 0,000000 |
          - 1 | - 0,006667 | 0 | 0,000000 | 0,000000 |
          0 | 0,000000 | 1 | 0,000071 | 0,000083 |
          1 | 0,006667 | 1 | 0,000352 | 0,000411 |
          2 | 0,013333 | 1 | 0,000908 | 0,001060 |
          3 | 0,020000 | 1 | 0,001731 | 0,002019 |
          4 | 0,026667 | 1 | 0,002813 | 0,003278 |
          5 | 0,033333 | 1 | 0,004145 | 0,004828 |
          ~ | ~ | ~ | ~ | ~ |
          24 | 0,160000 | 1 | 0,067877 | 0,077876 |
          25 | 0,166667 | 1 | 0,072816 | 0,083476 |
          26 | 0,173333 | 1 | 0,077874 | 0,089205 |
          27 | 0,180000 | 1 | 0,083047 | 0,095056 |
          28 | 0,186667 | 1 | 0,088331 | 0,101024 |
          29 | 0,193333 | 1 | 0,093719 | 0,107102 |
          30 | 0,200000 | 1 | 0,099208 | 0,113286 |
          31 | 0,206667 | 1 | 0,104794 | 0,119570 |
          32 | 0,213333 | 1 | 0,110471 | 0,125949 |
          33 | 0,220000 | 1 | 0,116236 | 0,132418 |
          34 | 0,226667 | 1 | 0,122085 | 0,138972 |
          35 | 0,233333 | 1 | 0,128013 | 0,145605 |
          36 | 0,240000 | 1 | 0,134016 | 0,152314 |
          37 | 0,246667 | 1 | 0,140091 | 0,159094 |
          ~ | ~ | ~ | ~ | ~ |
          175 | 1,166667 | 1 | 0,862416 | 0,895701 |
          176 | 1,173333 | 1 | 0,864968 | 0,897941 |
          177 | 1,180000 | 1 | 0,867484 | 0,900145 |
          178 | 1,186667 | 1 | 0,869964 | 0,902312 |
          179 | 1,193333 | 1 | 0,872410 | 0,904445 |
          180 | 1,200000 | 1 | 0,874821 | 0,906542 |
          181 | 1,206667 | 1 | 0,877197 | 0,908605 |
          182 | 1,213333 | 1 | 0,879540 | 0,910633 |
          183 | 1,220000 | 1 | 0,881849 | 0,912628 |
          184 | 1,226667 | 1 | 0,884125 | 0,914589 |
          185 | 1,233333 | 1 | 0,886367 | 0,916517 |
          186 | 1,240000 | 1 | 0,888577 | 0,918412 |
          187 | 1,246667 | 1 | 0,890755 | 0,920276 |
          188 | 1,253333 | 1 | 0,892900 | 0,922107 |
          189 | 1,260000 | 1 | 0,895014 | 0,923907 |
          190 | 1,266667 | 1 | 0,897096 | 0,925676 |
          191 | 1,273333 | 1 | 0,899147 | 0,927414 |
          192 | 1,280000 | 1 | 0,901168 | 0,929121 |
          193 | 1,286667 | 1 | 0,903158 | 0,930799 |
          194 | 1,293333 | 1 | 0,905117 | 0,932448 |
          195 | 1,300000 | 1 | 0,907047 | 0,934067 |
          ~ | ~ | ~ | ~ | ~ |
          2.3 Výpočet hodnot kouře
          V následujícím schématu je znázorněn obecný postup určení konečné hodnoty kouře.
          +++++ TIFF +++++
          otáčky Astupeň zatížení 1otáčky Astupeň zatížení 2otáčky Astupeň zatížení 3otáčky Bstupeň zatížení 1otáčky Bstupeň zatížení 2otáčky Bstupeň zatížení 3otáčky Cstupeň zatížení 1otáčky Bstupeň zatížení 2otáčky Bstupeň zatížení 3nezpracované hodnoty opacity N [%]převod na koeficient absorpce světla k [1/m],k = – (1/LA) × ln (1 – N/100)filtrování Besselovým filtremvýběr maximální hodnoty k (špička) pro každé otáčky a stupeň zatíženíYmax1,AYmax1,BYmax1,CYmax2,AYmax2,BYmax2,CYmax3,AYmax3,BYmax3,Ckontrola platnosti cyklu pro každé otáčkyvýpočet střední hodnoty kouře pro každé otáčkySVA = (Ymax1,A + Ymax2,A + Ymax3,A)/3SVB = (Ymax1,B + Ymax2,B + Ymax3,B)/3SVC = (Ymax1,C + Ymax2,C + Ymax3,C)/3výpočet konečné hodnoty kouřeSV = 0,43 × SVA + 0,56 × SVB + 0,01 × SVC
          Na obrázku b jsou znázorněny křivky změřeného nezpracovaného signálu opacity a nefiltrovaných a filtrovaných koeficientů absorpce světla (hodnota k) prvního stupně zatížení při zkoušce ELR a maximální hodnota Ymax1,A (špička) filtrované křivky. Odpovídajícím způsobem obsahuje tabulka C numerické hodnoty indexu i, čas (četnost sběru dat 150 Hz), nezpracované hodnoty opacity, nefiltrovanou hodnotu k a filtrovanou hodnotu k. Filtrování bylo provedeno s použitím konstant Besselova algoritmu vytvořeného v bodě 2.2 této přílohy. Vzhledem k obsáhlému množství dat byly do tabulky pojaty jen úseky křivky kouře okolo začátku a okolo špičkové hodnoty.
          Obrázek b
          Křivky změřené opacity N, nefiltrované hodnoty kouře k a filtrované hodnoty kouře k
          +++++ TIFF +++++
          opacita N [%]opacita Nnefiltrovaná hodnota kouře kfiltrovaná hodnota kouře kčas [s]Peak = 0,5424 m-1hodnota kouře k [1/m]
          Špičková hodnota (i = 272) je vypočtena za předpokladu následujících údajů z tabulky C. Všechny ostatní individuální hodnoty kouře se vypočtou stejným způsobem. Ke spuštění algoritmu se S-1, S-2, Y-1 a Y-2 nastaví na nulu.
          LA (m) | 0,430 |
          Index i | 272 |
          N ( %) | 16,783 |
          S271 (m-1) | 0,427392 |
          S270 (m-1) | 0,427532 |
          Y271 (m-1) | 0,542383 |
          Y270 (m-1) | 0,542337 |
          Výpočet hodnoty k (bod 6.3.1 dodatku 1 k příloze III):
          k =-1/0,430 × ln 1-16,783/100 = 0,427252 m-1
          Tato hodnota odpovídá S272 v následující rovnici.
          Výpočet Besselovy střední hodnoty kouře (bod 6.3.2 dodatku 1 k příloze III):
          V následující rovnici se použijí Besselovy konstanty z předcházejícího bodu 2.2. Skutečná nefiltrovaná hodnota k, která byla vypočtena výše, odpovídá S272 (Si). S271 (Si-1) a S270 (Si-2) jsou dvě předcházející nefiltrované hodnoty k, Y271 (Yi-1) a Y270 (Yi-2) jsou dvě předcházející filtrované hodnoty k.
          Y272 = 0,542383 + 8,272777 × 10-5 × 0,427252 + 2 × 0,427392 + 0,427532-4 × 0,542337 + 0,968410 × 0,542383-0,542337 = 0,542389 m-1
          Tato hodnota odpovídá Ymax1,A v následující rovnici.
          Výpočet konečné hodnoty kouře (bod 6.3.3 dodatku 1 k příloze III):
          Z každé křivky kouře se vezme maximální filtrovaná hodnota k pro další výpočet. Předpokládají se tyto hodnoty:
          Otáčky | Ymax (m-1) |
          Cyklus 1 | Cyklus 2 | Cyklus 3 |
          A | 0,5424 | 0,5435 | 0,5587 |
          B | 0,5596 | 0,5400 | 0,5389 |
          C | 0,4912 | 0,5207 | 0,5177 |
          RWA = 0,5424 + 0,5435 + 0,5587 / 3 = 0,5482 m- 1
          RWB = 0,5596 + 0,5400 + 0,5389 / 3 = 0,5462 m- 1
          RWC = 0,4912 + 0,5207 + 0,5177 / 3 = 0,5099 m- 1
          RW = 0,43 × 0,5482 + 0,56 × 0,5462 + 0,01 × 0,5099 = 0,5467 m- 1
          Potvrzení správnosti cyklu (bod 3.4 dodatku 1 k příloze III)
          Před výpočtem SV se musí zkontrolovat platnost cyklu výpočtem směrodatné odchylky hodnoty kouře ze tří cyklů pro každou hodnotu otáček.
          Otáčky | Střední SV (m-1) | Absolutní směrodatná odchylka (m-1) | Relativní směrodatná odchylka (%) |
          A | 0,5482 | 0,0091 | 1,7 |
          B | 0,5462 | 0,0116 | 2,1 |
          C | 0,5099 | 0,0162 | 3,2 |
          V tomto příkladu jsou kritéria kontroly správnosti 15 % splněna pro každou hodnotu otáček.
          Tabulka C
          Hodnoty opacity N, nefiltrovaná a filtrovaná hodnota k na začátku každého stupně zatížení
          Index i [-] | Čas [s] | Opacita N [%] | Nefiltrovaná hodnota k [m-1] | Filtrovaná hodnota k [m-1] |
          - 2 | 0,000000 | 0,000000 | 0,000000 | 0,000000 |
          - 1 | 0,000000 | 0,000000 | 0,000000 | 0,000000 |
          0 | 0,000000 | 0,000000 | 0,000000 | 0,000000 |
          1 | 0,006667 | 0,020000 | 0,000465 | 0,000000 |
          2 | 0,013333 | 0,020000 | 0,000465 | 0,000000 |
          3 | 0,020000 | 0,020000 | 0,000465 | 0,000000 |
          4 | 0,026667 | 0,020000 | 0,000465 | 0,000001 |
          5 | 0,033333 | 0,020000 | 0,000465 | 0,000002 |
          6 | 0,040000 | 0,020000 | 0,000465 | 0,000002 |
          7 | 0,046667 | 0,020000 | 0,000465 | 0,000003 |
          8 | 0,053333 | 0,020000 | 0,000465 | 0,000004 |
          9 | 0,060000 | 0,020000 | 0,000465 | 0,000005 |
          10 | 0,066667 | 0,020000 | 0,000465 | 0,000006 |
          11 | 0,073333 | 0,020000 | 0,000465 | 0,000008 |
          12 | 0,080000 | 0,020000 | 0,000465 | 0,000009 |
          13 | 0,086667 | 0,020000 | 0,000465 | 0,000011 |
          14 | 0,093333 | 0,020000 | 0,000465 | 0,000012 |
          15 | 0,100000 | 0,192000 | 0,004469 | 0,000014 |
          16 | 0,106667 | 0,212000 | 0,004935 | 0,000018 |
          17 | 0,113333 | 0,212000 | 0,004935 | 0,000022 |
          18 | 0,120000 | 0,212000 | 0,004935 | 0,000028 |
          19 | 0,126667 | 0,343000 | 0,007990 | 0,000036 |
          20 | 0,133333 | 0,566000 | 0,013200 | 0,000047 |
          21 | 0,140000 | 0,889000 | 0,020767 | 0,000061 |
          22 | 0,146667 | 0,929000 | 0,021706 | 0,000082 |
          23 | 0,153333 | 0,929000 | 0,021706 | 0,000109 |
          24 | 0,160000 | 1,263000 | 0,029559 | 0,000143 |
          25 | 0,166667 | 1,455000 | 0,034086 | 0,000185 |
          26 | 0,173333 | 1,697000 | 0,039804 | 0,000237 |
          27 | 0,180000 | 2,030000 | 0,047695 | 0,000301 |
          28 | 0,186667 | 2,081000 | 0,048906 | 0,000378 |
          29 | 0,193333 | 2,081000 | 0,048906 | 0,000469 |
          30 | 0,200000 | 2,424000 | 0,057067 | 0,000573 |
          31 | 0,206667 | 2,475000 | 0,058282 | 0,000693 |
          32 | 0,213333 | 2,475000 | 0,058282 | 0,000827 |
          33 | 0,220000 | 2,808000 | 0,066237 | 0,000977 |
          34 | 0,226667 | 3,010000 | 0,071075 | 0,001144 |
          35 | 0,233333 | 3,253000 | 0,076909 | 0,001328 |
          36 | 0,240000 | 3,606000 | 0,085410 | 0,001533 |
          37 | 0,246667 | 3,960000 | 0,093966 | 0,001758 |
          38 | 0,253333 | 4,455000 | 0,105983 | 0,002007 |
          39 | 0,260000 | 4,818000 | 0,114836 | 0,002283 |
          40 | 0,266667 | 5,020000 | 0,119776 | 0,002587 |
          Hodnoty opacity N, nefiltrovaná a filtrovaná hodnota k okolo Ymax1,A (≡ špičková hodnota, vyznačená tučnými číslicemi)
          Index i [-] | Čas [s] | Opacita N [%] | Nefiltrovaná hodnota k [m-1] | Filtrovaná hodnota k [m-1] |
          259 | 1,726667 | 17,182000 | 0,438429 | 0,538856 |
          260 | 1,733333 | 16,949000 | 0,431896 | 0,539423 |
          261 | 1,740000 | 16,788000 | 0,427392 | 0,539936 |
          262 | 1,746667 | 16,798000 | 0,427671 | 0,540396 |
          263 | 1,753333 | 16,788000 | 0,427392 | 0,540805 |
          264 | 1,760000 | 16,798000 | 0,427671 | 0,541163 |
          265 | 1,766667 | 16,798000 | 0,427671 | 0,541473 |
          266 | 1,773333 | 16,788000 | 0,427392 | 0,541735 |
          267 | 1,780000 | 16,788000 | 0,427392 | 0,541951 |
          268 | 1,786667 | 16,798000 | 0,427671 | 0,542123 |
          269 | 1,793333 | 16,798000 | 0,427671 | 0,542251 |
          270 | 1,800000 | 16,793000 | 0,427532 | 0,542337 |
          271 | 1,806667 | 16,788000 | 0,427392 | 0,542383 |
          272 | 1,813333 | 16,783000 | 0,427252 | 0,542389 |
          273 | 1,820000 | 16,780000 | 0,427168 | 0,542357 |
          274 | 1,826667 | 16,798000 | 0,427671 | 0,542288 |
          275 | 1,833333 | 16,778000 | 0,427112 | 0,542183 |
          276 | 1,840000 | 16,808000 | 0,427951 | 0,542043 |
          277 | 1,846667 | 16,768000 | 0,426833 | 0,541870 |
          278 | 1,853333 | 16,010000 | 0,405750 | 0,541662 |
          279 | 1,860000 | 16,010000 | 0,405750 | 0,541418 |
          280 | 1,866667 | 16,000000 | 0,405473 | 0,541136 |
          281 | 1,873333 | 16,010000 | 0,405750 | 0,540819 |
          282 | 1,880000 | 16,000000 | 0,405473 | 0,540466 |
          283 | 1,886667 | 16,010000 | 0,405750 | 0,540080 |
          284 | 1,893333 | 16,394000 | 0,416406 | 0,539663 |
          285 | 1,900000 | 16,394000 | 0,416406 | 0,539216 |
          286 | 1,906667 | 16,404000 | 0,416685 | 0,538744 |
          287 | 1,913333 | 16,394000 | 0,416406 | 0,538245 |
          288 | 1,920000 | 16,394000 | 0,416406 | 0,537722 |
          289 | 1,926667 | 16,384000 | 0,416128 | 0,537175 |
          290 | 1,933333 | 16,010000 | 0,405750 | 0,536604 |
          291 | 1,940000 | 16,010000 | 0,405750 | 0,536009 |
          292 | 1,946667 | 16,000000 | 0,405473 | 0,535389 |
          293 | 1,953333 | 16,010000 | 0,405750 | 0,534745 |
          294 | 1,960000 | 16,212000 | 0,411349 | 0,534079 |
          295 | 1,966667 | 16,394000 | 0,416406 | 0,533394 |
          296 | 1,973333 | 16,394000 | 0,416406 | 0,532691 |
          297 | 1,980000 | 16,192000 | 0,410794 | 0,531971 |
          298 | 1,986667 | 16,000000 | 0,405473 | 0,531233 |
          299 | 1,993333 | 16,000000 | 0,405473 | 0,530477 |
          300 | 2,000000 | 16,000000 | 0,405473 | 0,529704 |
          3. ZKOUŠKA ETC
          3.1 Plynné emise (vznětový motor)
          Předpokládají se tyto výsledky zkoušky se systémem PDP–CVS
          V0 (m3/ot) | 0,1776 |
          Np (ot) | 23073 |
          pB (kPa) | 98,0 |
          p1 (kPa) | 2,3 |
          T (K) | 322,5 |
          Ha (g/kg) | 12,8 |
          NOx conce (ppm) | 53,7 |
          NOx concd (ppm) | 0,4 |
          COconce (ppm) | 38,9 |
          COconcd (ppm) | 1,0 |
          HCconce (ppm) | 9,00 |
          HCconcd (ppm) | 3,02 |
          CO2,conce (%) | 0,723 |
          Wact (kWh) | 62,72 |
          Výpočet průtoku zředěného výfukového plynu (bod 4.1 dodatku 2 k příloze III):
          MTOTW = 1,293 × 0,1776 × 23073 × 98,0-2,3 × 273 / 101,3 × 322,5 = 4237,2 kg
          Výpočet korekčního faktoru NOx (bod 4.2 dodatku 2 k příloze III):
          KH, D = 11-0,0182 × 12,8-10,71 = 1,039
          Výpočet koncentrací korigovaných pozadím (bod 4.3.1.1 dodatku 2 k příloze III):
          Předpokládá se motorová nafta složení C1H1,8:
          FS = 100 × 11 + 1,82 + 3,76 × 1 + 1,84 = 13,6
          DF = 13,60,723 + 9,00 + 38,9 × 10- 4 = 18,69
          NOx conc = 53,7-0,4 × 1-1/18,69 = 53,3 ppm
          COconc = 38,9-1,0 × 1-1/18,69 = 37,9 ppm
          HCconc = 9,00-3,02 × 1-1/18,69 = 6,14 ppm
          Výpočet hmotnostního průtoku emisí (bod 4.3.1 dodatku 2 k příloze III):
          NOx mass = 0,001587 × 53,3 × 1,039 × 4237,2 = 372,391 g
          COmass = 0,000966 × 37,9 × 4237,2 = 155,129 g
          HCmass = 0,000479 × 6,14 × 4237,2 = 12,462 g
          Výpočet specifických emisí (bod 4.4 dodatku 2 k příloze III):
          NOx‾ = 372,391/62,72 = 5,94 g/kWh
          CO‾ = 155,129/62,72 = 2,47 g/kWh
          HC‾ = 12,462/62,72 = 0,199 g/kWh
          3.2 Emise částic (vznětový motor)
          Předpokládají se tyto výsledky zkoušky se systémem PDP–CVS s dvojitým ředěním:
          MTOTW (kg) | 4237,2 |
          Mf,p (mg) | 3,030 |
          Mf,b (mg) | 0,044 |
          MTOT (kg) | 2,159 |
          MSEC (kg) | 0,909 |
          Md (mg) | 0,341 |
          MDIL (kg) | 1,245 |
          DF | 18,69 |
          Wact (kWh) | 62,72 |
          Předpokládají se tyto výsledky zkoušky se systémem PDP–CVS s dvojitým ředěním:
          Mf = 3,030 + 0,044 = 3,074 mg
          MSAM = 2,159-0,909 = 1,250 kg
          PTmass = 3,0741,250 × 4237,21000 = 10,42 g
          Výpočet hmotnostních emisí korigovaný pozadím (bod 5.1 dodatku 2 k příloze III):
          PTmass = 3,0741,250-0,3411,245 × 1-118,69 × 4237,21000 = 9,32 g
          Výpočet specifických emisí (bod 5.2 dodatku 2 k příloze III):
          PT‾ = 10,42/62,72 = 0,166 g/kWh
          PT‾ = 9,32/62,72 = 0,149 g/kWh s korekcí pozadím
          3.3 Plynné emise (motor na stlačený zemní plyn)
          Předpokládají se tyto výsledky zkoušky se systémem PDP–CVS s dvojitým ředěním:
          MTOTW (kg) | 4237,2 |
          Ha (g/kg) | 12,8 |
          NOx conce (ppm) | 17,2 |
          NOx concd (ppm) | 0,4 |
          COconce (ppm) | 44,3 |
          COconcd (ppm) | 1,0 |
          HCconce (ppm) | 27,0 |
          HCconcd (ppm) | 3,02 |
          CH4 conce (ppm) | 18,0 |
          CH4 concd (ppm) | 1,7 |
          CO2,conce ( %) | 0,723 |
          Wact (kWh) | 62,72 |
          Výpočet korekčního faktoru NOx (bod 4.2 dodatku 2 k příloze III):
          KH,G = 11-0,0329 × 12,8-10,71 = 1,074
          Výpočet koncentrace NMHC (bod 4.3.1 dodatku 2 k příloze III):
          a) Metoda GC
          NMHCconce = 27,0-18,0 = 9,0 ppm
          b) Metoda NMC
          Předpokládá se účinnost vztažená k methanu 0,04 a účinnost vztažená k ethanu 0,98 (viz bod 1.8.4 dodatku 5 k příloze III):
          NMHCconce = 27,0 × 1-0,04-18,00,98-0,04 = 8,4 ppm
          Výpočet koncentrací korigovaných pozadím (bod 4.3.1.1 dodatku 2 k příloze III):
          Předpokládá se referenční palivo G20 (100 % methanu) se složením C1H4:
          FS = 100 × 11 + 42 + 3,76 × 1 + 44= 9,5
          DF = 9,50,723 + 27,0 + 44,3 × 10- 4 = 13,01
          U NMHC je koncentrace pozadí rozdílem mezi HCconcd a CH4concd:
          NOx conc = 17,2-0,4 × 1-1/13,01 = 16,8 ppm
          COconc = 44,3-1,0 × 1-1/13,01 = 43,4 ppm
          NMHCconc = 8,4-1,32 × 1-1/13,01 = 7,2 ppm
          CH4 conc = 18,0-1,7 × 1-1/13,01 = 16,4 ppm
          Výpočet hmotnostního průtoku emisí (bod 4.3.1 dodatku 2 k příloze III):
          NOx mass = 0,001587 × 16,8 × 1,074 × 4237,2 = 121,330 g
          COmass = 0,000966 × 43,4 × 4237,2 = 177,642 g
          NMHCmass = 0,000502 × 7,2 × 4237,2 = 15,315 g
          CH4 mass = 0,000554 × 16,4 × 4237,2 = 38,498 g
          Výpočet specifických emisí (bod 4.4 dodatku 2 k příloze III):
          NOx‾ = 121,330/62,72 = 1,93 g/kWh
          CO‾ = 177,642/62,72 = 2,83 g/kWh
          NMHC‾ = 15,315/62,72 = 0,244 g/kWh
          CH4‾ = 38,498/62,72 = 0,614 g/kWh
          4. FAKTOR POSUNU λ (Sλ)
          4.1 Výpočet faktoru posunu λ (Sλ) [1]
          Sλ = 21-inert %100n + m4-O2*100
          kde:
          Sλ = faktor posunu λ;
          inert % = % objemových inertních plynů v palivu (tj. N2, CO2, He atd.);
          O2* = % objemových původního kyslíku v palivu;
          n a m =
          vztahují se na střední hodnoty CnHm, které představují uhlovodíky v palivu, tj.:
          n = 1 × CH4 %100+ 2 × C2 %100+ 3 × C3 %100+ 4 × C4 %100+ 5 × C5 %100+ ..1-diluent %100
          m = 4 × CH4 %100 + 4 ×C2H4 %100 + 6 × C2H6 %100 + … 8 × C3H8 %100 + ..1-diluent %100
          kde:
          CH4 = % objemových methanu v palivu;
          C2 = % objemových všech uhlovodíků C2 (např.: C2H6, C2H4 atd.) v palivu;
          C3 = % objemových všech uhlovodíků C3 (např.: C3H8, C3H6 atd.) v palivu;
          C4 = % objemových všech uhlovodíků C4 (např.: C4H10, C4H8 atd.) v palivu;
          C5 = % objemových všech uhlovodíků C5 (např.: C5H12, C5H10 atd.) v palivu;
          diluent = objemových ředicích plynů v palivu (např.: O2*, N2, CO2, He atd.).
          4.2 Příklady výpočtu faktoru posunu λ (Sλ):
          Příklad 1: G25: CH4 = 86 %, N2 = 14 % (objemových)
          n = 1 × CH4 %100 + 2 × C2 %100 + ..1- diluent %100 = 1 × 0,861-14100= 0,860,86 = 1
          m = 4 × CH4 %100 + 4 × C2H4 %100 + ..1- diluent %100 = 4 × 0,860,86 = 4
          Sλ = 21-inert %100 n + m4-O2*100 = 21-14100 × 1 + 44 = 1,16
          Příklad 2: GR: CH4 = 87 %, C2H6 = 13 % (objemových)
          n = 1 × CH4 %100 + 2 × C2 %100 + ..1- diluent %100 = 1 × 0,87 + 2 × 0,131-0100 = 1,131 = 1,13
          m = 4 × CH4 %100 + 4 × C2H4 %100 + ..1 - diluent %100 = 4 × 0,87 + 6 × 0,131 = 4,26
          Sλ = 21-inert %100n + m4-O2*100 = 21-0100 × 1,13 + 4,264 = 0,911
          Příklad 3: USA: CH4 = 89 %, C2H6 = 4,5 %, C3H8 = 2,3 %, C6H14 = 0,2 %, O2 = 0,6 %, N2 = 4 %
          n = 1 × CH4 %100 + 2 × C2 %100+ ..1 - diluent %100 = 1 × 0,89 + 2 × 0,045 + 3 × 0,023 + 4 × 0,0021-0,64 + 4100 = 1,11
          m = 4 × CH4 %100 + 4 ×C2H4 %100 + 6 × C2H6100 + .. + 8 × C3H81001 - diluent %100 = 4 × 0,89 + 4 × 0,045 + 8 × 0,023 + 14 × 0,0021-0,6 + 4100= 4,24
          Sλ = 21-inert %100n + m4-O2*100 = 21-4100 × 1,11 + 4,244-0,6100 = 0,96
          [1] Stoichiometric Air/Fuel ratios of automotive fuels – SAE J1829, June 1987 (Stechiometrické poměry vzduch / palivo u automobilových paliv - SAE J1829 z června 1987). John B. Heywood, Internal combustion engine fundamentals (Základy spalovacích motorů), McGraw-Hill, 1988, kapitola 3.4 "Combustion stoichiometry" ("Stechiometrie spalování") (s. 68 až 72).
          --------------------------------------------------
          PŘÍLOHA VIII
          ZVLÁŠTNÍ TECHNICKÉ POŽADAVKY NA VZNĚTOVÉ MOTORY POUŽÍVAJÍCÍ JAKO PALIVO ETHANOL
          U vznětových motorů používajících jako paliva ethanol, platí pro zkušební postupy stanovené v příloze III této směrnice následující zvláštní úpravy odpovídajících bodů, rovnic a faktorů.
          V DODATKU 1 K PŘÍLOZE III:
          4.2 Korekce suchého / vlhkého stavu
          FFH = 1,8771 + 2,577 × GFUELGAIR W
          4.3 Korekce na vlhkost a teplotu u NOx
          KH,D = 11 + A × Ha - 10,71 + B × Ta - 298
          kde:
          A = 0,181 GFUEL/GAIRD - 0,0266.
          B = – 0,123 GFUEL/GAIRD + 0,00954.
          Ta = teplota vzduchu, K
          Ha = vlhkost nasávaného vzduchu, g vody na 1 kg suchého vzduchu
          4.4 Výpočet hmotnostních průtoků emisí
          Hmotnostní průtoky emisí (g/h) pro každý režim se vypočtou následujícím způsobem, přičemž se předpokládá, že hustota výfukového plynu je 1,272 kg/m3 při 273 K (0 °C) a 101,3 kPa:
          1. NOx mass = 0,001613 × NOx conc × KH,D × GEXH W
          2. COx mass = 0,000982 × COconc × GEXH W
          3. HCmass = 0,000809 × HCconc × KH,D × GEXH W
          kde
          NOx conc, COconc, HCconc [1] jsou střední koncentrace (ppm) v surovém výfukovém plynu určené podle bodu 4.1.
          Pokud jsou plynné emise volitelně určeny systémem s ředěním plného toku, použijí se tyto vzorce:
          1. NOx mass = 0,001587 × NOx conc × KH,D × GTOT W
          2. COx mass = 0,000966 × COconc × GTOT W
          3. HCmass = 0,000795 × HCconc × GTOT W
          kde
          NOx conc, COconc, HCconc [1] jsou střední koncentrace (ppm) korigované pozadím ve zředěném výfukovém plynu pro každý režim, určené podle přílohy III dodatku 2 bodu 4.3.1.1.
          V DODATKU 2 K PŘÍLOZE III:
          Body 3.1, 3.4, 3.8.3 a 5 dodatku 2 se nevztahují jen na vznětové motory, ale také na vznětové motory na ethanol.
          4.2 Zkušební podmínky musí být uspořádány tak, aby teplota a vlhkost vzduchu v sání motoru odpovídaly v průběhu zkoušky běžným podmínkám. Normálem by mělo být 6 ± 0,5 g vody na 1 kg suchého vzduchu při teplotě 298 K ± 3 K. V těchto mezích se neprovádí žádná další korekce NOx. Jestliže tyto podmínky nejsou dodrženy, je zkouška neplatná.
          4.3 Výpočet hmotnostního průtoku emisí
          4.3.1 Systémy s konstantním hmotnostním průtokem
          U systémů s výměníkem tepla se určí hmotnost znečišťujících látek (g/zkouška) z těchto rovnic:
          1.NOx mass = 0,001587 × NOx conc × KH,D × MTOT W motory používající jako palivo ethanol
          2.COx mass = 0,000966 × COconc × MTOT W motory používající jako palivo ethanol
          3.HCmass = 0,000794 × HCconc × MTOT W motory používající jako palivo ethanol
          kde:
          NOx conc, COconc, HCconc [2], NMHCconc = střední koncentrace korigované pozadím, za celý cyklus, zjištěné integrací (povinné pro NOx a HC) nebo změřené ve vacích, ppm;
          MTOTW = celková hmotnost zředěného výfukového plynu za celý cyklus určená podle bodu 4.1, vyjádřená v kg.
          4.3.1.1 Určení koncentrací korigovaných pozadím
          Aby se určily netto koncentrace znečišťujících látek, musí se od změřených koncentrací odečíst střední koncentrace pozadí plynných znečišťujících látek v ředicím vzduchu. Střední hodnoty koncentrací pozadí se mohou určit metodou vaku k odběru vzorků nebo kontinuálním měřením s integrací. Použije se tento vzorec:
          conc = conce - concd × 1 - 1DF
          kde:
          conc = koncentrace dané znečišťující látky ve zředěném výfukovém plynu korigovaná o množství dané znečišťující látky obsažené v ředicím vzduchu, ppm;
          conce = koncentrace dané znečišťující látky změřená v zředěném výfukovém plynu, ppm;
          concd = koncentrace dané znečišťující látky změřená v ředicím vzduchu, ppm;
          DF = faktor ředění.
          Faktor ředění se vypočte takto:
          DF = FSCO2conce + HCconce + COconce × 10-4
          kde:
          CO2conce = koncentrace CO2 ve zředěném výfukovém plynu, % objemových
          HCconce = koncentrace HC ve zředěném výfukovém plynu, ppm C1
          COconce = koncentrace CO ve zředěném výfukovém plynu, ppm
          FS = stechiometrický faktor
          Koncentrace změřené pro suchý stav se převedou na vlhký stav podle přílohy III dodatku 1 bodu 4.2.
          Stechiometrický faktor pro obecné složení paliva CHαOβNγ se vypočte takto:
          FS = 100 × 11 + α2 + 3,76 × 1 + α4 - β2 + γ2
          Jestliže není složení paliva známo, mohou se alternativně použít tyto stechiometrické faktory:
          FS (ethanol) = 12,3.
          4.3.2 Systémy s kompenzací průtoku
          U systémů bez výměníků tepla se určí hmotnost znečišťujících látek (g/zkouška) výpočtem okamžitých hmotnostních emisí a integrováním okamžitých hodnot za celý cyklus. Také se použije přímo na okamžitou hodnotu koncentrace korekce pozadím. Použijí se tyto vzorce:
          1.NOx mass = Σi = 1n MTOT W,i × NOx conce,i × 0,001587 - MTOTW × NOx concd × 1 - 1DF × 0,001587
          2.COmass = Σi = 1n MTOT W,i × COconce,i × 0,000966 - MTOTW × COconcd × 1 - 1DF × 0,000966
          3.HCmass = Σi = 1n MTOT W,i × HCconce,i × 0,000749 - MTOTW × HCconcd × 1 - 1DF × 0,000749
          kde:
          conce = koncentrace dané znečišťující látky změřená ve zředěném výfukovém plynu, ppm;
          concd = koncentrace dané znečišťující látky změřená v ředicím vzduchu, ppm;
          MTOTW,i = okamžitá hmotnost zředěného výfukového plynu (viz bod 4.1), kg;
          MTOTW = celková hmotnost zředěného výfukového plynu za celý cyklus (viz bod 4.1), kg;
          DF = faktor ředění určený podle bodu 4.3.1.1.
          4.4 Výpočet specifických emisí
          Emise (g/kWh) se vypočtou pro všechny jednotlivé složky takto:
          NO‾x = NOx massWact
          CO‾ = COmassWact
          HC‾ = HCmassWact
          kde:
          Wact = skutečná práce vykonaná v cyklu určená podle bodu 3.9.2, kWh.
          [1] Vztaženo na ekvivalent C1.
          [2] Vztaženo na ekvivalent C1.
          --------------------------------------------------
          PŘÍLOHA IX
          LHŮTY PRO PROVEDENÍ ZRUŠENÝCH SMĚRNIC DO VNITROSTÁTNÍCH PRÁVNÍCH PŘEDPISŮ
          (podle článku 10)
          Část A
          Zrušené směrnice
          Směrnice | Úřední věstník |
          Směrnice 88/77/EHS | L 36, 9.2.1988, s. 33. |
          Směrnice 91/542/EHS | L 295, 25.10.1991, s. 1. |
          Směrnice 96/1/ES | L 40, 17.2.1996, s. 1. |
          Směrnice 1999/96/ES | L 44, 16.2.2000, s. 1. |
          Směrnice 2001/27/ES | L 107, 18.4.2001, s. 10. |
          Část B
          Lhůty pro provedení ve vnitrostátním právu
          Směrnice | Lhůta pro provedení | Den použitelnosti |
          Směrnice 88/77/EHS | 1. červenec 1988 | |
          Směrnice 91/542/EHS | 1. leden 1992 | |
          Směrnice 96/1/ES | 1. červenec 1996 | |
          Směrnice 1999/96/ES | 1. červenec 2000 | |
          Směrnice 2001/27/ES | 1. říjen 2001 | 1. říjen 2001 |
          --------------------------------------------------
          PŘÍLOHA X
          SROVNÁVACÍ TABULKA
          (podle čl. 10 druhého pododstavce)
          Směrnice 88/77/EHS | Směrnice 91/542/EHS | Směrnice 1999/96/ES | Směrnice 2001/27/ES | Tato Směrnice |
          Článek 1 | — | | — | Článek 1 |
          Čl. 2 odst. 1 | Čl. 2 odst. 1 | Čl. 2 odst. 1 | Čl. 2 odst. 1 | Čl. 2 odst. 4 |
          Čl. 2 odst. 2 | Čl. 2 odst. 2 | Čl. 2 odst. 2 | Čl. 2 odst. 2 | Čl. 2 odst. 1 |
          — | Čl. 2 odst. 3 | — | — | — |
          Čl. 2 odst. 3 | — | — | — | — |
          Čl. 2 odst. 4 | Čl. 2 odst. 4 | Čl. 2 odst. 3 | Čl. 2 odst. 3 | Čl. 2 odst. 2 |
          — | — | — | Čl. 2 odst. 4 | Čl. 2 odst. 3 |
          — | — | — | Čl. 2 odst. 5 | — |
          — | — | Čl. 2 odst. 4 | — | Čl. 2 odst. 5 |
          — | — | Čl. 2 odst. 5 | — | Čl. 2 odst. 6 |
          — | — | Čl. 2 odst. 6 | — | Čl. 2 odst. 7 |
          — | — | Čl. 2 odst. 7 | — | Čl. 2 odst. 8 |
          — | — | Čl. 2 odst. 8 | — | Čl. 2 odst. 9 |
          Článek 3 | — | — | — | — |
          — | — | Články 5 a 6 | — | Článek 3 |
          — | — | Článek 4 | — | Článek 4 |
          — | Čl. 3 odst. 1 | Čl. 3 odst. 1 | — | Čl. 6 odst. 1 |
          — | Čl. 3 odst. 1 písm. a) | Čl. 3 odst. 1 písm. a) | — | Čl. 6 odst. 2 |
          — | Čl. 3 odst. 1 písm. b) | Čl. 3 odst. 1 písm. b) | — | Čl. 6 odst. 3 |
          — | Čl. 3 odst. 2 | Čl. 3 odst. 2 | — | Čl. 6 odst. 4 |
          — | Čl. 3 odst. 3 | Čl. 3 odst. 3 | — | Čl. 6 odst. 5 |
          Článek 4 | — | — | — | Článek 7 |
          Článek 6 | Články 5 a 6 | Článek 7 | — | Článek 8 |
          Článek 5 | Článek 4 | Článek 8 | Článek 3 | Článek 9 |
          — | — | — | — | Článek 10 |
          — | — | Článek 9 | Článek 4 | Článek 11 |
          Článek 7 | Článek 7 | Článek 10 | Článek 5 | Článek 12 |
          Přílohy I až VII | — | — | — | Přílohy I až VII |
          — | — | — | Příloha VIII | Příloha VIII |
          — | — | — | — | Příloha IX |
          — | — | — | — | Příloha X |
          --------------------------------------------------


Tento web používá soubory cookie. Používáním tohoto webu s tím souhlasíte. Další informace o cookies.
✔ O.K.